Space Adaptation: Privacy-preserving Multiparty Collaborative Mining with Geometric Perturbation

Keke Chen Ling Liu
Outline

- Introduction
 - Service-based collaborative mining
 - Privacy issues
- Geometric perturbation
 - Concept
 - Challenges in service based collaborative mining
- Space Adaptation Protocol
Introduction

- Service-based multiparty collaborative mining
Privacy issues in this paradigm

- The shared data may contain sensitive information that is important to the owner.

The goal

- Find the model without leaking the sensitive information to any of the involved parties.

Assumption:

- Data are encrypted in transmission.
- Semi-honest parties, without collusion.
Geometric Data Perturbation

- \(G(X) = RX + T + D \)
 - \(X \): dataset
 - \(R \): “random rotation matrix”
 - \(T \): “random translation matrix”
 - \(D \): random noise, for perturbing distances

\(Gi \) represents the parameters \((R,T,D)\),
\(Gi(X) \) is the perturbed data

- Particularly good for many classification models
 - Models trained with perturbed data keep similar prediction accuracy
 - kNN, kernel methods, SVMs, linear classifiers, and more
When it goes to multiparty...

- Each party has its own secret G_i
 - Different $G_i \rightarrow$ different data space
 - But mining can be only done on a unified space
 - So we need to **securely unify these G_i to G_t**

- Potential attacks
 - The revealed information is valuable, only when
 - the data owner is identified, given $G_i(X)$ or $G_t(X)$
 - when $G_i(X)$ or $G_t(X)$ is known, X can be estimated precisely

- Privacy threats from
 - Other curious data providers
 - Curious service provider
Space Adaptation (SA)

- SA is one of the approaches unifying Gi
 - Utilize the fact that geometric transformations are transformable to each other

- The “space adaptor” : transform Gi to Gt
 - $G_t(X) = S_{i \rightarrow t}(G_i(X))$, S is the space adaptor, G_t is the unified perturbation
 - Each party knows G_t, and thus holds $S_{i \rightarrow t}$, G_i, and $G_i(X)$
Space Adaptation

- **Protocol**
 - Prevent service provider identifying source
 - Shuffle perturbed data between data providers
 - Prevent data provider breaching privacy from the received perturbed data
 - Locally optimized Gi [Chen&Liu SDM07]
 - Ignore the details ...
Evaluation

- **Source identifiability**
 \[\pi = \Pr(\text{source is identified}) \]

- **Normalized privacy guarantee**
 - Maximum privacy guarantee \(b_i \)
 - Locally optimized privacy guarantee \(\rho_i \)
 - Normalized privacy guarantee: \(\rho_i/b_i \)

- **Overall risk of privacy breach for DPi**
 For DP j receiving perturbed data from DP i
 risk: \(1* (1 - \rho_i/b_i) \)

 For service provider
 risk: \(1/n * (1 - \rho_i'/bi) \)

 \(\rho_i' \) is the privacy guarantee of Gt to Xi
Conclusion

- Properties of geometric perturbation
- SA protocol considers
 - Source identifiability
 - attacks to the perturbed data
- Future work
 - Remove the semi-honest assumption
- Contact the authors
 - Keke Chen (kekechen@cc.gatech.edu)
 - Ling Liu (lingliu@cc.gatech.edu)