Brief Announcement:

Partition Approach to Failure Detectors for k-Set Agreement

Wei Chen, Microsoft Research Asia
Jialin Zhang, Tsinghua University
Yu Chen, Microsoft Research Asia
Xuezheng Liu, Microsoft Research Asia
Background

System model:
- asynchronous message-passing,
- processes may fail by crashing

k-Set Agreement:
- n distributed processes, each proposes one value
- agree on at most k different proposed values
- $k=1$ is the classic consensus problem
- k-set agreement is impossible when k processes may fail

Failure detectors
- abstract synchrony and failure conditions
Failure Detectors for k-Set Agreement

Several FD variants known, among them:

- [Mostefaoui, et.al, PODC’06]: Ω_k, the weakest among the known FDs that solves k-set agreement (with a majority of correct processes)
- Weakest FD for k-set agreement (for any $k>1$) is an open problem: “… remains one of the greatest research challenges in the fault-tolerant asynchronous computing theory community.” [Raynal, Travers ’06]
- $\Omega_k \times \Sigma$: the weakest one known in the message-passing model
Our Contribution

- We introduce the **partition approach**
 - A general approach to weaken FDs for \(k \)-set agreement
- We apply the partition approach to \((\Omega_k \times \Sigma)\) in the message-passing model, and define:
 - \(\Pi_k\): statically partitioned FD, strictly weaker than \(\Omega_k \times \Sigma\)
 - \(\Pi^S_k\): splittable partitioned FD, strictly weaker than \(\Pi_k\)
 - \(\Pi_k\) and \(\Pi^S_k\) strong enough to solve \(k\)-set agreement
Defining Partitioned FDs via the Partition Approach

For Π_k, Informally,

- FD decides a **static partition** of processes \{P_1, \ldots, P_s\} in each run

- For all P_i, FD on P_i satisfies all safety properties of $\Omega_{k_i} \times \Sigma$ restricted on P_i, such that $k_1 + k_2 + \ldots + k_s \leq k$.

 - to guarantee at most k decisions for k-set agreement.

- There exists a P_j (live component), FD on P_j satisfies all liveness properties of $\Omega_{k_j} \times \Sigma$ restricted on P_j

 - to guarantee that eventually processes make decisions.

For Π^S_k, informally allow dynamic splitting
Relationship Lattice
Relationship Lattice
Summary

- Introduce a general partition approach
- Apply the approach to weaken existing FDs in the message-passing model
- We also have results in shared-memory model (DISC’06)
- Open a new dimension in studying weak FDs for k-set agreement

Future work:
- Formally define partitioned FDs and study the weakest partitioned FDs
- Implementation of partitioned FDs to match network partitions