Papers Presented at the
2004 Workshop on
Concurrency and Synchronization in
Java Programs

St. Johns, Newfoundland, Canada
July 25-26, 2004

In conjunction with:
The ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing

FOREWORD

This volume contains the 11 papers presented at the 2004 Workshop on Concurrency and Syn-
chronization in Java Programs, held in conjunction with ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC) from July 25 to 26, 2004, in St. Johns, New-
foundland, Canada. The goal of this workshop is to promote interaction between the distributed
computing and Java™ communities.

The contributed papers were selected from 16 submissions. The submissions were read and
evaluated by the program committee, but were not formally refereed; it is expected that many
of them will appear in more polished form in fully refereed scientific publication venues. A
selection of papers will appear in a special journal issue dedicated to the workshop.

The Program Committee would like to thank all the authors who submitted papers for consid-
eration. We would also like to thank Krishnamurthy Vidyasankar for his generous help with
local arrangements for the workshop and in preparing this collection of papers presented at
the workshop. We also thank Panagiota Fatourou and Victor Luchangco for their help with
publicity, and Marcos Aguilera and Jaap-Henk Hoepman for putting together the submission
management software.

Financial support for the workshop was provided by Sun Microsystems Laboratories, and we
are grateful to Steve Heller and Rita Tavilla for their help with this.

Program Committee

David Bacon, IBM

Hans Boehm, HP

Josh Bloch, Sun Microsystems

David Detlefs, Sun Microsystems Laboratories

Tim Harris, Cambridge University

Maurice Herlihy, Brown University

David Holmes, DLTeCH Pty Ltd

Doug Lea, SUNY Oswego

Mark Moir, Sun Microsystems Laboratories (Co-Chair)
Vivek Sarkar, IBM

Nir Shavit, Sun Microsystems Laboratories (Co-Chair)
Martin Rinard, MIT

Jan Vitek, Purdue University

ii

TABLE OF CONTENTS

Session 1: Tools for Synchronization

The java.util.concurrent Synchronizer Framework

D TR T 1
Exclusion Control for Java and C#: Experimenting with Granularity of Locks

J. Potter, A. Shanneb, and E. Yu 10
Dynamic Inference of Polymorphic Lock Types

J. Rose, N. Swamy, and M. Hicks i 18

Session 2: Memory Models and Formal Methods

Rigorous Concurrency Analysis of Multithreaded Programs

Y. Yang, G. Gopalakrishnan, and G. Lindstromo ... 26
Requirements for Programming Language Memory Models
J. Manson and W. Pugh 36

Session 3: Software Transactional Memory

Exceptions and side-effects in atomic blocks

I = I T P 46
Transactional Lock-Free Objects for Real-Time Java

F. Pizlo, M. Prochazka, S. Jagannathan, and J. Vitek 54
Snapshots and Software Transactional Memory

C. Cole and M. Herlihy e 63
Contention Management in Dynamic Software Iransactional Memory

W. Scherer and M. SCOtE i e e 70

Session 4: Software Engineering

Finding Concurrency Bugs In Java

D. Hovemeyer and W. Pugh 80
Observations on the Assured Evolution of Concurrent Java Programs
A. Greenhouse, T. Halloran, and W. Scherlis i ... 90

iii

v

Presented Papers

The java.util.concurrent Synchronizer Framework

Doug Lea
SUNY Oswego
Oswego NY 13126
dl@cs.oswego.edu

ABSTRACT

Most synchronizers (locks, barriers, etc.) in the J2SEIL.5
java.util.concurrent package are constructed using a small
framework based on class AbstractQueuedSynchro-
nizer. This framework provides common mechanics for
atomically managing synchronization state, blocking and
unblocking threads, and queuing. The paper describes the
rationale, design, implementation, usage, and performance of this
framework.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming —
Parallel Programming

General Terms
Algorithms, Measurement, Performance, Design.

Keywords

Synchronization, Java

1. INTRODUCTION

Java™ release J2SE-1.5 introduces package java.util.concurrent, a
collection of medium-level concurrency support classes created
via Java Community Process (JCP) Java Specification Request
(JSR) 166. Among these components are a set of synchronizers —
abstract data type (ADT) classes that maintain an internal
synchronization state (for example, representing whether a lock
is locked or unlocked), operations to update and inspect that
state, and at least one method that will cause a calling thread to
block if the state requires it, resuming when some other thread
changes the synchronization state to permit it. Examples include
various forms of mutual exclusion locks, read-write locks,
semaphores, barriers, futures, event indicators, and handoff
queues.

As is well-known (see e.g., [2]) nearly any synchronizer can be
used to implement nearly any other. For example, it is possible to
build semaphores from reentrant locks, and vice versa. However,
doing so often entails enough complexity, overhead, and
inflexibility to be at best a second-rate engineering option.
Further, it is conceptually unattractive. If none of these constructs
are intrinsically more primitive than the others, developers
should not be compelled to arbitrarily choose one of them as a
basis for building others. Instead, JSR166 establishes a small
framework centered on class AbstractQueuedSynchro-
nizer, that provides common mechanics that are used by most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CSJP’04, July 26, 2004, St John's, Newfoundland, CA.

of the provided synchronizers in the package, as well as other
classes that users may define themselves.

The remainder of this paper discusses the requirements for this
framework, the main ideas behind its design and implementation,
sample usages, and some measurements showing its performance
characteristics.

2. REQUIREMENTS
2.1 Functionality

Synchronizers possess two kinds of methods [7]: at least one
acquire operation that blocks the calling thread unless/until the
synchronization state allows it to proceed, and at least one
release operation that changes synchronization state in a way that
may allow one or more blocked threads to unblock.

The java.util.concurrent package does not define a single unified
API for synchronizers. Some are defined via common interfaces
(e.g., Lock), but others contain only specialized versions. So,
acquire and release operations take a range of names and forms
across different classes. For example, methods Lock.lock,
Semaphore.acquire, CountDownLatch.await, and
FutureTask.get all map to acquire operations in the
framework. However, the package does maintain consistent
conventions across classes to support a range of common usage
options. When meaningful, each synchronizer supports:

* Nonblocking synchronization attempts (for example,
tryLock) as well as blocking versions.

* Optional timeouts, so applications can give up waiting.

* Cancellability via interruption, usually separated into one
version of acquire that is cancellable, and one that isn't.

Synchronizers may vary according to whether they manage only
exclusive states — those in which only one thread at a time may
continue past a possible blocking point — versus possible shared
states in which multiple threads can at least sometimes proceed.
Regular lock classes of course maintain only exclusive state, but
counting semaphores, for example, may be acquired by as many
threads as the count permits. To be widely useful, the framework
must support both modes of operation.

The java.util.concurrent package also defines interface
Condition, supporting monitor-style await/signal operations
that may be associated with exclusive Lock classes, and whose
implementations are intrinsically intertwined with their
associated Lock classes.

2.2 Performance Goals

Java built-in locks (accessed using synchronized methods
and blocks) have long been a performance concern, and there is a
sizable literature on their construction (e.g., [1], [3]). However,
the main focus of such work has been on minimizing space
overhead (because any Java object can serve as a lock) and on
minimizing time overhead when used in mostly-single-threaded

contexts on uniprocessors. Neither of these are especially
important concerns for synchronizers: Programmers construct
synchronizers only when needed, so there is no need to compact
space that would otherwise be wasted, and synchronizers are
used almost exclusively in multithreaded designs (increasingly
often on multiprocessors) under which at least occasional
contention is to be expected. So the usual JVM strategy of
optimizing locks primarily for the zero-contention case, leaving
other cases to less predictable "slow paths" [12] is not the right
tactic for typical multithreaded server applications that rely
heavily on java.util.concurrent.

Instead, the primary performance goal here is scalability: to
predictably maintain efficiency even, or especially, when
synchronizers are contended. Ideally, the overhead required to
pass a synchronization point should be constant no matter how
many threads are trying to do so. Among the main goals is to
minimize the total amount of time during which some thread is
permitted to pass a synchronization point but has not done so.
However, this must be balanced against resource considerations,
including total CPU time requirements, memory traffic, and
thread scheduling overhead. For example, spinlocks usually
provide shorter acquisition times than blocking locks, but usually
waste cycles and generate memory contention, so are not often
applicable.

These goals carry across two general styles of use. Most
applications should maximize aggregate throughput, tolerating, at
best, probabilistic guarantees about lack of starvation. However
in applications such as resource control, it is far more important
to maintain fairness of access across threads, tolerating poor
aggregate throughput. No framework can decide between these
conflicting goals on behalf of users; instead different fairness
policies must be accommodated.

No matter how well-crafted they are internally, synchronizers
will create performance bottlenecks in some applications. Thus,
the framework must make it possible to monitor and inspect basic
operations to allow users to discover and alleviate bottlenecks.
This minimally (and most usefully) entails providing a way to
determine how many threads are blocked.

3. DESIGN AND IMPLEMENTATION

The basic ideas behind a synchronizer are quite straightforward.
An acquire operation proceeds as:

while (synchronization state does not allow acquire) {
enqueue current thread if not already queued;
possibly block current thread;

2

J
dequeue current thread if it was queued;

And a release operation is:

update synchronization state;
if (state may permit a blocked thread to acquire)
unblock one or more queued threads;

Support for these operations requires the coordination of three
basic components:

* Atomically managing synchronization state
* Blocking and unblocking threads

* Maintaining queues

It might be possible to create a framework that allows each of
these three pieces to vary independently. However, this would
neither be very efficient nor usable. For example, the information
kept in queue nodes must mesh with that needed for unblocking,
and the signatures of exported methods depend on the nature of
synchronization state.

The central design decision in the synchronizer framework was
to choose a concrete implementation of each of these three
components, while still permitting a wide range of options in
how they are used. This intentionally limits the range of
applicability, but provides efficient enough support that there is
practically never a reason not to use the framework (and instead
build synchronizers from scratch) in those cases where it does

apply.

3.1 Synchronization State

Class AbstractQueuedSynchronizer maintains synchro-
nization state using only a single (32bit) int, and exports
getState, setState, and compareAndSetState
operations to access and update this state. These methods in turn
rely on java.util.concurrent.atomic support providing JSR133
(Java Memory Model) compliant volatile semantics on reads
and writes, and access to native compare-and-swap or load-
linked/store-conditional instructions to implement compare-
AndSetState, that atomically sets state to a given new value
only if it holds a given expected value.

Restricting synchronization state to a 32bit int was a pragmatic
decision. While JSR166 also provides atomic operations on 64bit
long fields, these must still be emulated using internal locks on
enough platforms that the resulting synchronizers would not
perform well. In the future, it seems likely that a second base
class, specialized for use with 64bit state (i.e., with Long control
arguments), will be added. However, there is not now a
compelling reason to include it in the package. Currently, 32 bits
suffice for most applications. Only one java.util.concurrent
synchronizer class, CyclicBarrier, would require more bits
to maintain state, so instead uses locks (as do most higher-level
utilities in the package).

Concrete classes based on AbstractQueuedSynchronizer
must define methods tryAcquire and tryRelease in terms
of these exported state methods in order to control the acquire
and release operations. The tryAcquire method must return
true if synchronization was acquired, and the tryRelease
method must return true if the new synchronization state may
allow future acquires. These methods accept a single int
argument that can be used to communicate desired state; for
example in a reentrant lock, to re-establish the recursion count
when re-acquiring the lock after returning from a condition wait.
Many synchronizers do not need such an argument, and so just
ignore it.

3.2 Blocking

Until JSR166, there was no Java API available to block and
unblock threads for purposes of creating synchronizers that are
not based on built-in monitors. The only candidates were
Thread.suspend and Thread.resume, which are
unusable because they encounter an unsolvable race problem: If
an unblocking thread invokes resume before the blocking
thread has executed suspend, the resume operation will have
no effect.

The java.util.concurrent.locks package includes a LockSup-
port class with methods that address this problem. Method
LockSupport.park blocks the current thread unless or until
a LockSupport.unpark has been issued. (Spurious wakeups
are also permitted.) Calls to unpark are not "counted", so
multiple unparks before a park only unblock a single park.
Additionally, this applies per-thread, not per-synchronizer. A
thread invoking park on a new synchronizer might return
immediately because of a "leftover" unpark from a previous
usage. However, in the absence of an unpark, its next
invocation will block. While it would be possible to explicitly
clear this state, it is not worth doing so. It is more efficient to
invoke park multiple times when it happens to be necessary.

This simple mechanism is similar to those used, at some level, in
the Solaris-9 thread library [11], in WIN32 "consumable events",
and in the Linux NPTL thread library, and so maps efficiently to
each of these on the most common platforms Java runs on.
(However, the current Sun Hotspot JVM reference
implementation on Solaris and Linux actually uses a pthread
condvar in order to fit into the existing runtime design.) The
park method also supports optional relative and absolute
timeouts, and is integrated with JVM Thread.interrupt
support — interrupting a thread unparks it.

3.3 Queues

The heart of the framework is maintenance of queues of blocked
threads, which are restricted here to FIFO queues. Thus, the
framework does not support priority-based synchronization.

These days, there is little controversy that the most appropriate
choices for synchronization queues are non-blocking data
structures that do not themselves need to be constructed using
lower-level locks. And of these, there are two main candidates:
variants of Mellor-Crummey and Scott (MCS) locks [9], and
variants of Craig, Landin, and Hagersten (CLH) locks [5][8][10].
Historically, CLH locks have been used only in spinlocks.
However, they appeared more amenable than MCS for use in the
synchronizer framework because they are more easily adapted to
handle cancellation and timeouts, so were chosen as a basis. The
resulting design is far enough removed from the original CLH
structure to require explanation.

A CLH queue is not very queue-like, because its enqueuing and
dequeuing operations are intimately tied to its uses as a lock. It is
a linked queue accessed via two atomically updatable fields,
head and tail, both initially pointing to a dummy node.

head tail

'

-4— | pred 147 node

node's status

A new node, node, is enqueued using an atomic operation:
do { pred = tail;

} while (!tail.compareAndSet (pred, node));
The release status for each node is kept in its predecessor node.
So, the "spin" of a spinlock looks like:

while (pred.status != RELEASED) ; // spin
A dequeue operation after this spin simply entails setting the
head field to the node that just got the lock:

head = node;

Among the advantages of CLH locks are that enqueuing and
dequeuing are fast, lock-free, and obstruction free (even under
contention, one thread will always win an insertion race so will
make progress); that detecting whether any threads are waiting is
also fast (just check if head is the same as tail); and that
release status is decentralized, avoiding some memory
contention.

In the original versions of CLH locks, there were not even links
connecting nodes. In a spinlock, the pred variable can be held
as a local. However, Scott and Scherer[10] showed that by
explicitly maintaining predecessor fields within nodes, CLH
locks can deal with timeouts and other forms of cancellation: If a
node's predecessor cancels, the node can slide up to use the
previous node's status field.

The main additional modification needed to use CLH queues for
blocking synchronizers is to provide an efficient way for one
node to locate its successor. In spinlocks, a node need only
change its status, which will be noticed on next spin by its
successor, so links are unnecessary. But in a blocking
synchronizer, a node needs to explicitly wake up (unpark) its
SuCCessor.

An AbstractQueuedSynchronizer queue node contains a
next link to its successor. But because there are no applicable
techniques for lock-free atomic insertion of double-linked list
nodes using compareAndSet, this link is not atomically set as
part of insertion; it is simply assigned:
pred.next = node;

after the insertion. This is reflected in all usages. The next link
is treated only as an optimized path. If a node's successor does
not appear to exist (or appears to be cancelled) via its next field,
it is always possible to start at the tail of the list and traverse
backwards using the pred field to accurately check if there
really is one.

A second set of modifications is to use the status field kept in
each node for purposes of controlling blocking, not spinning. In
the synchronizer framework, a queued thread can only return
from an acquire operation if it passes the tryAcquire method
defined in a concrete subclass; a single "released" bit does not
suffice. But control is still needed to ensure that an active thread
is only allowed to invoke tryAcquire when it is at the head of
the queue; in which case it may fail to acquire, and (re)block.
This does not require a per-node status flag because permission
can be determined by checking that the current node's
predecessor is the head. And unlike the case of spinlocks, there
is not enough memory contention reading head to warrant
replication. However, cancellation status must still be present in
the status field.

The queue node status field is also used to avoid needless calls to
park and unpark. While these methods are relatively fast as
blocking primitives go, they encounter avoidable overhead in the
boundary crossing between Java and the JVM runtime and/or OS.
Before invoking park, a thread sets a "signal me" bit, and then
rechecks synchronization and node status once more before
invoking park. A releasing thread clears status. This saves
threads from needlessly attempting to block often enough to be
worthwhile, especially for lock classes in which lost time waiting
for the next eligible thread to acquire a lock accentuates other
contention effects. This also avoids requiring a releasing thread
to determine its successor unless the successor has set the signal
bit, which in turn eliminates those cases where it must traverse

multiple nodes to cope with an apparently null next field unless
signalling occurs in conjunction with cancellation.

Perhaps the main difference between the variant of CLH locks
used in the synchronizer framework and those employed in other
languages is that garbage collection is relied on for managing
storage reclamation of nodes, which avoids complexity and
overhead. However, reliance on GC does still entail nulling of
link fields when they are sure to never to be needed. This can
normally be done when dequeuing. Otherwise, unused nodes
would still be reachable, causing them to be uncollectable.

Some further minor tunings, including lazy initialization of the
initial dummy node required by CLH queues upon first
contention, are described in the source code documentation in the
J2SE1.5 release.

Omitting such details, the general form of the resulting
implementation of the basic acquire operation (exclusive,
noninterruptible, untimed case only) is:

if (ItryAcquire(arg)) {
node = create and enqueue new node;
pred = node's effective predecessor;
while (pred is not head node || !tryAcquire(arg)) {
if (pred's signal bit is set)
park();
else
compareAndSet pred's signal bit to true;
pred = node's effective predecessor;,

head = node;
/

And the release operation is:

if (tryRelease(arg) && head node's signal bit is set) {
compareAndSet head's signal bit to false;

unpark head's successor, if one exists

/

The number of iterations of the main acquire loop depends, of
course, on the nature of tryAcquire. Otherwise, in the
absence of cancellation, each component of acquire and release is
a constant-time O(1) operation, amortized across threads,
disregarding any OS thread scheduling occuring within park.

Cancellation support mainly entails checking for interrupt or
timeout upon each return from park inside the acquire loop. A
cancelled thread due to timeout or interrupt sets its node status
and unparks its successor so it may reset links. With cancellation,
determining predecessors and successors and resetting status may
include O(n) traversals (where n is the length of the queue).
Because a thread never again blocks for a cancelled operation,
links and status fields tend to restabilize quickly.

3.4 Condition Queues

The synchronizer framework provides a ConditionObject
class for use by synchronizers that maintain exclusive
synchronization and conform to the Lock interface. Any number
of condition objects may be attached to a lock object, providing
classic monitor-style await, signal, and signalAll
operations, including those with timeouts, along with some
inspection and monitoring methods.

The ConditionObject class enables conditions to be
efficiently integrated with other synchronization operations,
again by fixing some design decisions. This class supports only
Java-style monitor access rules in which condition operations are
legal only when the lock owning the condition is held by the
current thread (See [4] for discussion of alternatives). Thus, a
ConditionObject attached to a ReentrantLock acts in
the same way as do built-in monitors (via Object.wait etc),
differing only in method names, extra functionality, and the fact
that users can declare multiple conditions per lock.

A ConditionObject uses the same internal queue nodes as
synchronizers, but maintains them on a separate condition queue.
The signal operation is implemented as a queue transfer from the
condition queue to the lock queue, without necessarily waking up
the signalled thread before it has re-acquired its lock.

The basic await operation is:
create and add new node to condition queue;
release lock;
block until node is on lock queue;
re-acquire lock;

And the signal operation is:
transfer the first node from condition queue to lock queue;

Because these operations are performed only when the lock is
held, they can use sequential linked queue operations (using a
nextWaiter field in nodes) to maintain the condition queue.
The transfer operation simply unlinks the first node from the
condition queue, and then uses CLH insertion to attach it to the
lock queue.

The main complication in implementing these operations is
dealing with cancellation of condition waits due to timeouts or
Thread.interrupt. A cancellation and signal occuring at
approximately the same time encounter a race whose outcome
conforms to the specifications for built-in monitors. As revised in
JSR133, these require that if an interrupt occurs before a signal,
then the await method must, after re-acquiring the lock, throw
InterruptedException. But if it is interrupted after a
signal, then the method must return without throwing an
exception, but with its thread interrupt status set.

To maintain proper ordering, a bit in the queue node status
records whether the node has been (or is in the process of being)
transferred. Both the signalling code and the cancelling code try
to compareAndSet this status. If a signal operation loses this race,
it instead transfers the next node on the queue, if one exists. If a
cancellation loses, it must abort the transfer, and then await lock
re-acquisition. This latter case introduces a potentially
unbounded spin. A cancelled wait cannot commence lock re-
acquisition until the node has been successfully inserted on the
lock queue, so must spin waiting for the CLH queue insertion
compareAndSet being performed by the signalling thread to
succeed. The need to spin here is rare, and employs a
Thread.yield to provide a scheduling hint that some other
thread, ideally the one doing the signal, should instead run. While
it would be possible to implement here a helping strategy for the
cancellation to insert the node, the case is much too rare to justify
the added overhead that this would entail. In all other cases, the
basic mechanics here and elsewhere use no spins or yields, which
maintains reasonable performance on uniprocessors.

4. USAGE

Class AbstractQueuedSynchronizer ties together the
above functionality and serves as a "template method pattern" [6]
base class for synchronizers. Subclasses define only the methods
that implement the state inspections and updates that control
acquire and release. However, subclasses of Ab-
stractQueuedSynchronizer are not themselves usable as
synchronizer ADTs, because the class necessarily exports the
methods needed to internally control acquire and release policies,
which should not be made visible to users of these classes. All
java.util.concurrent synchronizer classes declare a private inner
AbstractQueuedSynchronizer subclass and delegate all
synchronization methods to it. This also allows public methods to
be given names appropriate to the synchronizer.

For example, here is a minimal Mutex class, that uses
synchronization state zero to mean unlocked, and one to mean
locked. This class does not need the value arguments supported
for synchronization methods, so uses zero, and otherwise ignores
them.

class Mutex {
class Sync
extends AbstractQueuedSynchronizer {
public boolean tryAcquire (int ignore) {
return compareAndSetState (0, 1);
}
public boolean tryRelease (int ignore) {
setState (0); return true;
}
}
private final Sync sync = new Sync();
public void lock() { sync.acquire(0); }
public void unlock() { sync.release(0); }

}

A fuller version of this example, along with other usage guidance
may be found in the J2SE documentation. Many variants are of
course possible. For example, tryAcquire could employ "test-
and-test-and-set" by checking the state value before trying to
change it.

It may be surprising that a construct as performance-sensitive as
a mutual exclusion lock is intended to be defined using a
combination of delegation and virtual methods. However, these
are the sorts of OO design constructions that modern dynamic
compilers have long focussed on. They tend to be good at
optimizing away this overhead, at least in code in which
synchronizers are invoked frequently.

Class AbstractQueuedSynchronizer also supplies a
number of methods that assist synchronizer classes in policy
control. For example, it includes timeout and interruptible
versions of the basic acquire method. And while discussion so far
has focussed on exclusive-mode synchronizers such as locks, the
AbstractQueuedSynchronizer class also contains a
parallel set of methods (such as acquireShared) that differ in
that the tryAcquireShared and tryReleaseShared
methods can inform the framework (via their return values) that
further acquires may be possible, ultimately causing it to wake up
multiple threads by cascading signals.

Although it is not usually sensible to serialize (persistently store
or transmit) a synchronizer, these classes are often used in turn to
construct other classes, such as thread-safe collections, that are
commonly serialized. The AbstractQueuedSynchronizer
and ConditionObject classes provide methods to serialize
synchronization state, but not the underlying blocked threads or

other intrinsically transient bookkeeping. Even so, most
synchronizer classes merely reset synchronization state to initial
values on deserialization, in keeping with the implicit policy of
built-in locks of always deserializing to an unlocked state. This
amounts to a no-op, but must still be explicitly supported to
enable deserialization of final fields.

4.1 Controlling Fairness

Even though they are based on FIFO queues, synchronizers are
not necessarily fair. Notice that in the basic acquire algorithm
(Section 3.3), tryAcquire checks are performed before
queuing. Thus a newly acquiring thread can “steal” access that is
"intended" for the first thread at the head of the queue.

This barging FIFO strategy generally provides higher aggregate
throughput than other techniques. It reduces the time during
which a contended lock is available but no thread has it because
the intended next thread is in the process of unblocking. At the
same time, it avoids excessive, unproductive contention by only
allowing one (the first) queued thread to wake up and try to
acquire upon any release. Developers creating synchronizers
may further accentuate barging effects in cases where
synchronizers are expected to be held only briefly by defining
tryAcquire to itself retry a few times before passing back
control.

Barging FIFO synchronizers have only probablistic fairness
properties. An unparked thread at the head of the lock queue has

ﬁ first ‘ ‘ ‘
queued threads

an unbiased chance of winning a race with any incoming barging
thread, reblocking and retrying if it loses. However, if incoming
threads arrive faster than it takes an unparked thread to unblock,
the first thread in the queue will only rarely win the race, so will
almost always reblock, and its successors will remain blocked.
With briefly-held synchronizers, it is common for multiple
bargings and releases to occur on multiprocessors during the time
the first thread takes to unblock. As seen below, the net effect is
to maintain high rates of progress of one or more threads while
still at least probabilistically avoiding starvation.

barging thread

When greater fairness is required, it is a relatively simple matter
to arrange it. Programmers requiring strict fairness can define
tryAcquire to fail (return false) if the current thread is not at
the head of the queue, checking for this using method
getFirstQueuedThread, one of a handful of supplied
inspection methods.

A faster, less strict variant is to also allow tryAcquire to
succeed if the the queue is (momentarily) empty. In this case,
multiple threads encountering an empty queue may race to be the
first to acquire, normally without enqueuing at least one of them.
This strategy is adopted in all java.util.concurrent synchronizers
supporting a "fair" mode.

While they tend to be useful in practice, fairness settings have no
guarantees, because the Java Language Specification does not
provide scheduling guarantees. For example, even with a strictly
fair synchronizer, a JVM could decide to run a set of threads
purely sequentially if they never otherwise need to block waiting
for each other. In practice, on a uniprocessor, such threads are

likely to each run for a time quantum before being pre-emptively
context-switched. If such a thread is holding an exclusive lock, it
will soon be momentarily switched back, only to release the lock
and block now that it is known that another thread needs the lock,
thus further increasing the periods during which a synchronizer is
available but not acquired. Synchronizer fairness settings tend to
have even greater impact on multiprocessors, which generate
more interleavings, and hence more opportunities for one thread
to discover that a lock is needed by another thread.

Even though they may perform poorly under high contention
when protecting briefly-held code bodies, fair locks work well,
for example, when they protect relatively long code bodies
and/or with relatively long inter-lock intervals, in which case
barging provides little performance advantage and but greater
risk of indefinite postponement. The synchronizer framework
leaves such engineering decisions to its users.

4.2 Synchronizers
Here are sketches of how java.util.concurrent synchronizer
classes are defined using this framework:

The ReentrantLock class uses synchronization state to hold
the (recursive) lock count. When a lock is acquired, it also
records the identity of the current thread to check recursions and
detect illegal state exceptions when the wrong thread tries to
unlock. The class also uses the provided ConditionObject,
and exports other monitoring and inspection methods. The class
supports an optional "fair" mode by internally declaring two
different AbstractQueuedSynchronizer subclasses (the
fair one disabling barging) and setting each ReentrantLock
instance to use the appropriate one upon construction.

The ReentrantReadWriteLock class uses 16 bits of the
synchronization state to hold the write lock count, and the
remaining 16 bits to hold the read lock count. The WriteLock
is otherwise structured in the same way as ReentrantLock.
The ReadLock uses the acquireShared methods to enable
multiple readers.

The Semaphore class (a counting semaphore) uses the
synchronization state to hold the current count. It defines
acquireShared to decrement the count or block if
nonpositive, and tryRelease to increment the count, possibly
unblocking threads if it is now positive.

The CountDownLatch class uses the synchronization state to
represent the count. All acquires pass when it reaches zero.

The FutureTask class uses the synchronization state to
represent the run-state of a future (initial, running, cancelled,
done). Setting or cancelling a future invokes release,
unblocking threads waiting for its computed value via acquire.

The SynchronousQueue class (a CSP-style handoff) uses
internal wait-nodes that match up producers and consumers. It
uses the synchronization state to allow a producer to proceed
when a consumer takes the item, and vice-versa.

Users of the java.util.concurrent package may of course define
their own synchronizers for custom applications. For example,
among those that were considered but not adopted in the package
are classes providing the semantics of various flavors of WIN32
events, binary latches, centrally managed locks, and tree-based
barriers.

5. PERFORMANCE

While the synchronizer framework supports many other styles of
synchronization in addition to mutual exclusion locks, lock
performance is simplest to measure and compare. Even so, there
are many different approaches to measurement. The experiments
here are designed to reveal overhead and throughput.

In each test, each thread repeatedly updates a pseudo-random
number computed using function nextRandom (int seed):

int t = (seed % 127773) * 16807 -

(seed / 127773) * 2836;

return (t > 0)? t t + OxX7fffffff;
On each iteration a thread updates, with probability S, a shared
generator under a mutual exclusion lock, else it updates its own
local generator, without a lock. This results in short-duration
locked regions, minimizing extraneous effects when threads are
preempted while holding locks. The randomness of the function
serves two purposes: it is used in deciding whether to lock or not
(it is a good enough generator for current purposes), and also
makes code within loops impossible to trivially optimize away.

Four kinds of locks were compared: Builtin, using synchronized
blocks; Mutex, using a simple Mutex class like that illustrated in
section 4; Reentrant, using ReentrantLock; and Fair, using
ReentrantLock set in its "fair" mode. All tests used build 46
(approximately the same as beta2) of the Sun J2SE1.5 JDK in
"server" mode. Test programs performed 20 uncontended runs
before collecting measurements, to eliminate warm-up effects.
Tests ran for ten million iterations per thread, except Fair mode
tests were run only one million iterations.

Tests were performed on four x86-based machines and four
UltraSparc-based machines. All x86 machines were running
Linux using a RedHat NPTL-based 2.4 kernel and libraries. All
UltraSparc machines were running Solaris-9. All systems were at
most lightly loaded while testing. The nature of the tests did not
demand that they be otherwise completely idle. The "4P" name
reflects the fact a dual hyperthreaded (HT) Xeon acts more like a
4-way than a 2-way machine. No attempt was made to normalize
across the differences here. As seen below, the relative costs of
synchronization do not bear a simple relationship to numbers of
processors, their types, or speeds.

Table 1 Test Platforms

Name Processors Type Speed (Mhz)
1P 1 | Pentium3 900
2P 2 Pentium3 1400
2A 2 | Athlon 2000
4P 2 HT | Pentium4/Xeon 2400
U 1 | UltraSparc2 650
4U 4 UltraSparc2 450
8U 8 | UltraSparc3 750
24U 24 UltraSparc3 750

5.1 Overhead

Uncontended overhead was measured by running only one
thread, subtracting the time per iteration taken with a version
setting S=0 (zero probability of accessing shared random) from a
run with S=1. Table 2 displays these estimates of the per-lock
overhead of synchronized code over unsynchronized code, in

nanoseconds. The Mutex class comes closest to testing the basic
cost of the framework. The additional overhead for Reentrant
locks indicates the cost of recording the current owner thread and
of error-checking, and for Fair locks the additional cost of first
checking whether the queue is empty.

Table 2 also shows the cost of tryAcquire versus the "fast
path" of a built-in lock. Differences here mostly reflect the costs
of using different atomic instructions and memory barriers across
locks and machines. On multiprocessors, these instructions tend
to completely overwhelm all others. The main differences
between Builtin and synchronizer classes are apparently due to
Hotspot locks using a compareAndSet for both locking and
unlocking, while these synchronizers use a compareAndSet for
acquire and a volatile write (i.e., with a memory barrier on
multiprocessors, and reordering constraints on all processors) on
release. The absolute and relative costs of each vary across
machines.

At the other extreme, Table 3 shows per-lock overheads with S=1
and running 256 concurrent threads, creating massive lock
contention. Under complete saturation, barging-FIFO locks have
about an order of magnitude less overhead (and equivalently
greater throughput) than Builtin locks, and often two orders of
magnitude less than Fair locks. This demonstrates the
effectiveness of the barging-FIFO policy in maintaining thread
progress even under extreme contention.

Table 2 Uncontended Per-Lock Overhead in Nanoseconds

Machine Builtin Mutex Reentrant Fair
1P 18 9 31 37
2P 58 71 77 81
2A 13 21 31 30
4P 116 95 109 117
1U 90 40 58 67
4U 122 82 100 115
8U 160 83 103 123
24U 161 84 108 119

Table 3 Saturated Per-Lock Overhead in Nanoseconds

Machine Builtin Mutex Reentrant Fair
1P 521 46 67 8327
2P 930 108 132 14967
2A 748 79 84 33910
4P 1146 188 247 15328
1U 879 153 177 41394
4U 2590 347 368 30004
8U 1274 157 174 31084
24U 1983 160 182 32291

Table 3 also illustrates that even with low internal overhead,
context switching time completely determines performance for
Fair locks. The listed times are roughly proportional to those for
blocking and unblocking threads on the various platforms.

Additionally, a follow-up experiment (using machine 4P only)
shows that with the very briefly held locks used here, fairness
settings had only a small impact on overall variance. Differences
in termination times of threads were recorded as a coarse-grained
measure of variability. Times on machine 4P had standard
deviation of 0.7% of mean for Fair, and 6.0% for Reentrant. As a
contrast, to simulate long-held locks, a version of the test was run
in which each thread computed 16K random numbers while
holding each lock. Here, total run times were nearly identical
(9.79s for Fair, 9.72s for Reentrant). Fair mode variability
remained small, with standard deviation of 0.1% of mean, while
Reentrant rose to 29.5% of mean.

5.2Throughput

Usage of most synchronizers will range between the extremes of
no contention and saturation. This can be experimentally
examined along two dimensions, by altering the contention
probability of a fixed set of threads, and/or by adding more
threads to a set with a fixed contention probability. To illustrate
these effects, tests were run with different contention
probablilities and numbers of threads, all using Reentrant locks.
The accompanying figures use a slowdown metric:

t

slowdown=
S-b-n+(1—S)-b-max(1,%)

Here, ¢ is the total observed execution time, b is the baseline time
for one thread with no contention or synchronization, n is the
number of threads, p is the number of processors, and S remains
the proportion of shared accesses. This value is the ratio of
observed time to the (generally unattainable) ideal execution time
as computed using Amdahl's law for a mix of sequential and
parallel tasks. The ideal time models an execution in which,
without any synchronization overhead, no thread blocks due to
conflicts with any other. Even so, under very low contention, a
few test results displayed very small speedups compared to this
ideal, presumably due to slight differences in optimization,
pipelining, etc., across baseline versus test runs.

The figures use a base 2 log scale. For example, a value of 1.0
means that a measured time was twice as long as ideally possible,
and a value of 4.0 means 16 times slower. Use of logs
ameliorates reliance on an arbitrary base time (here, the time to
compute random numbers), so results with different base
computations should show similar trends. The tests used
contention probabilities from 1/128 (labelled as "0.008") to 1,
stepping in powers of 2, and numbers of threads from 1 to 1024,
stepping in half-powers of 2.

On uniprocessors (1P and 1U) performance degrades with
increasing contention, but generally not with increasing numbers
of threads. Multiprocessors generally encounter much worse
slowdowns under contention. The graphs for multiprocessors
show an early peak in which contention involving only a few
threads usually produces the worst relative performance. This
reflects a transitional region of performance, in which barging
and signalled threads are about equally likely to obtain locks,
thus frequently forcing each other to block. In most cases, this is
followed by a smoother region, as the locks are almost never
available, causing access to resemble the near-sequential pattern
of uniprocessors; approaching this sooner on machines with more
processors. Notice for example that the values for full contention
(labelled "1.000") exhibit relatively worse slowdowns on
machines with fewer processors.

Log2 Slowdown

Log2 Slowdown

Log2 Slowdown

1U

0.7 4
0.65 —
0.6 %
0.55 —
0.5+
0.45 —
04
0.35) hHrm /\n O e
03+

X
xxxXx ZXxxxXXxxxxXXXX

0.25 4

0.2 B

015 4 S <94 <d s<gaaadaat s
0.1

0.05 *ﬁ*—»—»—A»—»—»—»—»—»—»—»H—K»
0 A AAANAAANADNAAAADNAAAAA

005 g3 igéidadsidsdiigiit
UL e

T T
011.22.33.4455.66.77.88.99.1
5 5 5 5 5 5 5 5 50

Log2 Threads

1P

1.2 1
114 XXX xx X XXXXXZXZXZXTZXTZXZXZX
1% g
0.9
0.8 — JYEIVENE
077"_’(A B e e o e e L e L e e e L e e Ve]
0.6 -
05+
047<<<‘<<1<1<<1<1<1<1<1<1<1<1<1<1<1<1
03+
02 >>>"> > b > > b »r, »
0.1
0 b4 g A"AqixA N N o & g—
2 e e e e B s B s
011.22.33.4455.66.77.88.99.1
5 5 5 5 5 5 5 5 50

Log2 Threads

2P

Log2 Threads

o 0.008
¢ 0.016
v 0.031
A 0.063
» 0.125
< 0.250
» 0.500
X 1.000

o 0.008
¢ 0.016
v 0.031
A 0.063
» 0.125
< 0.250
» 0.500
X 1.000

= 0.008
¢ 0.016
v 0.031
A 0.063
» 0.125
< 0.250
» 0.500
X 1.000

Log2 Slowdown

Log2 Slowdown

Log2 Slowdown

w
u
|

- N
[S, I I, B V]
| | | |

w
wn
|

- N
N W
| | |, |

-
|

Log2 Threads

4P

I I BRIV
SEEEEEY 57
L e S S

AAaaAB BB B AL

VYV yyVVyvy VgV ',V

A

v

R

A

v

o6 >0 o oo o o000
/DDDDDDDDDDDDDDDD

L T T T T
.22.33.44.55.66.77.88.90.
5 5 5 5 5

5 5 5
Log2 Threads

4U

g8 88gga

Lo 0 O 6 6 6 0 O

)

!
1
0

[R5

Log2 Threads

o 0.008
¢ 0.016
v 0.031
A 0.063
» 0.125
< 0.250
M 0.500
X 1.000

o 0.008
¢ 0.016
v 0.031
A 0.063
> 0.125
< 0.250
M 0.500
X 1.000

o 0.008
¢ 0.016
v 0.031
A 0.063
» 0.125
< 0.250
M 0.500
X 1.000

35+ x
3.25 ” ﬂgiqa*;hfwfa\iu
39 k) EVVVV§ V399 vV
275 | Voo ¥eg
c 4 [s e o
S 25 “7/§ : Ty % | 0008
3 | . N s o 0.
S 2257 AXX/;22X§XXP§; S Y
3 2*3‘/ vy . Txxxzxx |y0031
o 175 / og® =
n 1ol / o ot L e %e |b0063
~ T / v / = > 0.125
S 1254 # < 0.250
A 14, / M 0.500
075+ # < 1.000
05+ ¢/ a"
0.25 4/°
(¥ N O A
011.22.33.44.55.66.77.88.99.1
5 5 5 5 5 5 5 5 50
Log2 Threads
4.5
47 X
c 35 %
g 3 i\ v 4 < < o 0.008
T PRS- IR S b * 0.016
o 25| /% ;\ v 0.031
0 5 ¥ §/X . e CEVERVIRVE R **'*”/“/; A 0.063
N hv /| d fxg,,zxxzxTXE > 0.125
o 15 / < 0.250
4 I, #= M 0.500
1 % 1,000
o
0.5 & .
OFT T T T T T T T T T T T T T T TT7T1
011.22.33.4455.66.77.88.99.1
5 5 5 5 5 5 5 5 50

Log2 Threads

On the basis of these results, it appears likely that further tuning
of blocking (park/unpark) support to reduce context switching
and related overhead could provide small but noticeable
improvements in this framework. Additionally, it may pay off for
synchronizer classes to employ some form of adaptive spinning
for briefly-held highly-contended locks on multiprocessors, to
avoid some of the flailing seen here. While adaptive spins tend to
be very difficult to make work well across different contexts, it
is possible to build custom forms of locks using this framework,
targetted for specific applications that encounter these kinds of
usage profiles.

6. CONCLUSIONS

As of this writing, the java.util.concurrent synchronizer
framework is too new to evaluate in practice. It is unlikely to see
widespread usage until well after final release of J2SE1.5, and
there will surely be unexpected consequences of its design, API,

implementation, and performance. However, at this point, the
framework appears successful in meeting the goals of providing
an efficient basis for creating new synchronizers.

7. ACKNOWLEDGMENTS

Thanks to Dave Dice for countless ideas and advice during the
development of this framework, to Mark Moir and Michael Scott
for urging consideration of CLH queues, to David Holmes for
critiquing early versions of the code and API, to Victor
Luchangco and Bill Scherer for reviewing previous incarnations
of the source code, and to the other members of the JSR166
Expert Group (Joe Bowbeer, Josh Bloch, Brian Goetz, David
Holmes, and Tim Peierls) as well as Bill Pugh, for helping with
design and specifications and commenting on drafts of this paper.
Portions of this work were made possible by a DARPA PCES
grant, NSF grant EIA-0080206 (for access to the 24way Sparc)
and a Sun Collaborative Research Grant.

8. REFERENCES

[1] Agesen, O., D. Detlefs, A. Garthwaite, R. Knippel, Y. S.
Ramakrishna, and D. White. An Efficient Meta-lock for
Implementing Ubiquitous Synchronization. ACM OOPSLA
Proceedings, 1999.

[2] Andrews, G. Concurrent Programming. Wiley, 1991.

[3] Bacon, D. Thin Locks: Featherweight Synchronization for
Java. ACM PLDI Proceedings, 1998.

[4] Buhr, P. M. Fortier, and M. Coffin. Monitor Classification,
ACM Computing Surveys, March 1995.

[5] Craig, T. S. Building FIFO and priority-queueing spin locks
from atomic swap. Technical Report TR 93-02-02,
Department of Computer Science, University of
Washington, Feb. 1993.

[6] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design
Patterns, Addison Wesley, 1996.

[71 Holmes, D. Synchronisation Rings, PhD Thesis, Macquarie
University, 1999.

[8] Magnussen, P., A. Landin, and E. Hagersten. Queue locks
on cache coherent multiprocessors. 8th Intl. Parallel
Processing Symposium, Cancun, Mexico, Apr. 1994.

[91 Mellor-Crummey, J.M., and M. L. Scott. Algorithms for
Scalable Synchronization on Shared-Memory
Multiprocessors. ACM Trans. on Computer Systems,
February 1991

[10] M. L. Scott and W N. Scherer III. Scalable Queue-Based
Spin Locks with Timeout. 8th ACM Symp. on Principles
and Practice of Parallel Programming, Snowbird, UT, June
2001.

[11] Sun Microsystems. Multithreading in the Solaris Operating
Environment. White paper available at
http://wwws.sun.com/software/solaris/whitepapers.html
2002.

[12] Zhang, H., S. Liang, and L. Bak. Monitor Conversion in a
Multithreaded Computer System. United States Patent
6,691,304. 2004.

Exclusion Control for Java and C#:
Experimenting with Granularity of Locks

John Potter
potter@cse.unsw.edu.au

Abdelsalam Shanneb
shanneba@cse.unsw.edu.au

Eric Yu
ericyu02@alumni.cse.unsw.edu.au

School of Computer Science and Engineering
The University of New South Wales
Sydney — Australia

ABSTRACT

We present experimental results on how the granularity of locking
provided by synchronization wrappers affects performance. The
wrappers implement method-level synchronization whose exclusion
behavior is specified using a declarative approach. Our experimentd
results with both Java and C# suggest that fine-grained exclusion
control is worthwhile implementing, at least for heavily loaded objects,
and that there appesars to be no performance penalty in doing so.

To overcome resistance to programming more complex and fragile
synchronization code, we propose generating the code automaticaly,
based on the exclusion specification. Essentially this only entails
describing the read-write conflicts between method pairs in an object’s
interface. The automatic code generation can ether be done
dynamically using exigting reflection mechanisms, or staticaly by a
compiler. In the latter case we envisage minor language extensions to
allow programmers to specify both the exclusion requirements for a
given object, and the exclusion control to be provided by a given object
when it is constructed.

Keywords

Concurrency control, Java, C#, mutud exclusion, read-write locks,
synchronization, decorators, wrappers, algebra of exclusion, locking
granularity.

1. INTRODUCTION

With increasing use of concurrency in applications software, thereis a
need to simplify the task of programmers in writing correct and
efficient code for multi-threaded applications. We believe tha a
sensible approach to this problem is to provide the programmer with a
variety of concurrency models, together with supporting specification
mechanisms that encourage a separation between the functional code
of the system, and the concurrency management. Where there is a
dependency between the two, that is, between function and control, we
would like to see automated tool support for generating code that is
guaranteed to implement the specified concurrency model.

This paper explores this idea in the context of synchronization
wrappers based on method-level exclusion control. Exclusion control is
probably the easiest synchronization control to deal with. Nevertheless,
it till remains a pain for programmers to implement the code for more
sophigicated exclusion control. Typicaly such code will be fragile
with respect to both inteface extensions and internal data
representation and sharing; this fragility manifests itself, for example,
in the inheritance anomaly, but is also apparent in wrapper-based

10

synchronization: when new methods interfere with existing methods,
synchronization wrappers will need to be modified, and not just simply
extended (except for the simplest form of synchronization wrapper
based on complete mutual exclusion of method calls).

For our work we rely on the algebra of exclusion [8] to express the
synchronization specificaion for a given class This alows
programmers to escape from the tedium of managing the
synchronization code implementing the requirements. Given an
exclusion expression, and the interface for the class, it is easy to
automatically generate a corresponding synchronization wrapper.
Whenever classes are modified, the corresponding exclusion
expression will need to be re-specified, and the wrapper re-generated.
A wrapper may provide more exclusion than that required, but should
not provide less. In practice, most programmers simply choose to
implement a mutex to achieve thread-safety by locking out all but one
thread. Our goal is to make it easy for progranmers to specify finer-
grained exclusion, without the tedium of managing the locking code.

In line with this goal, we have designed a single genera -purpose
lock that can be customized to provide precisely the behavior specified
by the exclusion expression; the general-purpose lock employs a
simple bitset implementation of the current lock-state, and admits
methods according to the admissibility of the consequent lock-gate;
admissibility is specified by the exclusion expression. For such alock
to be useful in providing programmer-specified synchronization
wrappers there needs to be some language level mechanism for
mapping between a method index, as used in the bitset, and method
cals: method reification is one heavy-handed possibility; a second is
code generation. We defer further discussion of language or tools
support to the end of the paper.

In this paper we conduct experiments exploring the effect on
performance of vaying the granularity of exclusion-based
synchronization control. The purpose of this study is to gain some
insight into the effect of different controls, and whether it is worth the
trouble of providing programmers with extra support for implementing
exclusion controls with different granularity. So we have focused on a
typical application environment, with a uniprocessor; furthermore,
because we are atempting to explore the effect of control granularity,
we only compare like with like. Our experiments are designed to
explore the reative differences between different exclusion policies,
using the same genera-purpose lock described above, and not absolute
performance measures.

The experimental framework is &kin to an open queuing model as
discussed in Kleinrock[6]. Queuing theory predicts a linear increase of
throughput with load until saturation is reached, after which throughput

remains congant with increasing load. Roughly speaking, our results
are in accord with theory, with some caveats to be discussed later. We
conducted our experiments both with Java and C#. The Java-based
experiments were conducted with Sun’s 1.3 JVM. The C#-based
experiments showed some irregularities initialy, so we conducted
more extensive experiments that allowed us to partition the data into
two more regular sets of observations. In the end we have produced
experimental results for Java and C# that provide us not only with
enough similarities to draw some general conclusions, but aso with
some differences that may bear further investigation.

The paper is organized as follows The next section discusses
related work by others and our own broader research objectives.
Section 3 introduces the concept of exclusion expressions, and the
algebra of exclusion. Section 4 discusses how to generate
synchronization wrappers automatically given an exclusion expression.
Section 5 details our experimental set-up. The results of our
experiments are summarized next: Section 6 deals with the Java-based
experiment, and Section 7 with C#: Section 7 goes into more detail
discussing how we had to partition our observations to explain
irregularities in the C# experiments. Section 8 summarizes the
similarities and differences between the Java and C# experiments.
Section 9 discusses the overall outcomes of the experiments, together
with some further comments on other effects we observed in varying
the granularity of exclusion control. A brief summary concludes the

paper.

2. RELATED WORK

Software wrappers, or decorators, are a general-purpose mechanism for
adding new functionality or for restricting access to existing
functionality in the embedded software. The technique has been
applied in areas as diverse as security and privacy [2] and database
access. Various techniques have been used, including pre-processors
and class libraries.

Using wrappers to separate concurrency control from the behavior
of underlying object is standard practice now. With JDK 1.2, the Java
Collections Framework addressed thread-safety by providing
unsynchronized base classes and factory methods for generating
synchronized wrappers. These enforce single threading within the
wrapped object. Lea’s book [7] reveals the variety of approaches for
designing and implementing concurrent programs in Java, it offers
many techniques and patterns for letting threads work together safely.
JSR166 [5], following on from the Java Concurrency Package of JDK
1.5, builds on the work of Doug Lea and others to offer a new
concurrency primitives and a set of standardized concurrency utilities,
intended to simplify the development of concurrent applications. Our
work could provide asmall addition to thisnew package.

Philippsen [9] gives a comprehensive comparison survey of
concurrent object-oriented languages in terms of identifying the key
areas of integration as well as differences between the object-oriented
and concurrent programming paradigms. In terms of performance
comparisons between concurrent object-oriented systems based on
locking granularity, we have found little evidence of published work,
whereas much work investigating locking granularity is evident in the
area of database systems [10][11].

The emergence of the .NET programming suite with the
accompanying new languages, opened the door for more comparative
studies. Nebro et al [1] present their experience when porting a Java-
based runtime system (JACO) to the .NET plaform under the
programming languages C# and J#. Their comparison highlights some
grengths and weaknesses in both platforms. Our work presented here
walks aong the same line and provides a customizable exclusion
mechanism which sits comfortably on either aJVM or the .NET CLR.

The work on exclusion controls and the experimental study
reported here forms part of an ongoing research program dealing with
concurrency and objects. A recurring theme of much of thiswork isthe

11

separation of function and control. David Holmes et al [3] proposed the
notion of dividing the synchronization control aspect of object systems
into three further agpects, the exclusion aspect, the state-based aspect
and the coordination aspect. Noble et al [8] devised the Algebra of
Exclusion as a means for simply describing the requirements of the
exclusion aspect of synchronization. In his doctoral thesis, Holmes [4]
introduced the synchronization rings model for reusing synchronization
controls in wrapping layers. One of his conclusions was that the
execution cost of layering and extra complexity associated with queue
management for attempted optimizations, such as implementing the
specific notification mechanism, was prohibitive when compared with
direct implementation of controls. Our hope remains that layering
controlsis still the right way to view the specification of such systems,
irrespective of their implementation. However if there is a mismatch
between the layers of specification and layers of implementation,
correctness of the implementation becomes more of an issue.

Zhang [12] is considering this problem in his doctoral work, and
has produced a variant of the m-calculus with locking semantics,
together with a new equivalence for reasoning about compositional
method-based control. The implementation of exclusion control in a
single lock can be seen as a simple example of the potential for
optimization: for example, four read-write sets could be implemented
as four separate read-write locks, with appropriae coordination, or as
four read-write synchronization rings, or, asin our implementation, via
asingletable-based exclusion lock.

3. ALGEBRA OF EXCLUSION

Noble et al [8] introduce the Algebra of Exclusion for specifying
method-level exclusion. The algebra is intended for reasoning about
the synchronization requirements of objects, including composites,
where there may be some choice about whether controls should be
implemented internally or externally. We focus on external control for
asingle object here.

The dgebra provides a way of expressing different levels of
exclusion control for any object; there is a finest grain of control that
guarantees the object to be thread-safe. The agebra can model
exclusion requirements, such as those based on a methods read-write
access to its fields. The following figure depicts an example of an
object with three methods my, my,, and m; and two fields v; and vs,.

r

mJ
w

m
r

m;3
w

Figure 1: Read-Write Dependency

In this example method m; writes to the field vi, m, writes to v,
and m; reads from both v and v,, as shown in thefollowing table.

v1 v2
r w r w
m;y \/
my \/
m | v v

Figure 2: Read-Write Dependency Table

For this example, m; and m, are independent writers, with m; a
reader interfering with both; this can be represented by the exclusion
expression m; ms | M, s as explained below. This abstracts away from
the explicit dependence on the fields, reflecting the synchronization
requirements at the interface of the object.

The agebra can define different expressions that correspond to
different levels of exclusion control. These expressions are formulated
using two main operators; the disjunction operator ajb which means
tha method a and b can execute concurrently, and the mutud
exclusion operator axb which means tha a and b conflict (that is, form
an exclusion pair). We use a to indicate the self-exclusion axa. Not
only do exclusion expressions denote a set of exclusion pairs, but they
aso define dl names in the interface for example, botha anda | b
denote the same self-exclusion on a but the latter is for an extended
interface that includes b, that isindependent of a.

Assuming an object has three methods a, b and c, the algebra can
describe different levels of exclusion control. For convenience we omit
the operators and infer them as follows: a list of names is implicitly a
disunct. Such a lig followed by a self-exclusion expression has a
mutuad exclusion operator inferred. This is clarified in the following
simple examples. The expression abc is amutex on all the methods; it
is equivalent to ajplc and also to axbxc. The expression a bc
(equivalently a x b|) represents a read-write lock with a as the
reader and b and c as writers. A finer grain control has ¢ as an
independent writer, which may execute concurrently with either of the
others: aFl?(equivdently a xgl?); this exclusion represents the
combination of a read-write lock on a and b, with a mutex on c. The
finest grain control is vacuous, allowing all methods to execute
concurrently; we denote this simply asabc (equivaently ajb|c).

Excluson expressions can be presented in a conflict matrix format.
For example, the read-write expression ac b is represented by the
following bit matrix:

a|b c
a 0 1 0
b 1 1 1
c 0 1 0

4., EXCLUSION WRAPPERS

Having introduced the algebra of exclusion, we show how our model
incorporates these control expressions into wrappers to enforce the
desired exclusion control. The main goa of the modd is to keep the
original code separate from control code. Thisis achieved by wrapping
each method with a lock defined the exclusion control expression, as
suggested in Figure 3.

The exclusion lock code is customized according to the exclusion
expression. These customized locks ae used in defining the
synchronization wrapper for the object.

We now condder some code excerpts to illustrate the
synchronization wrapper. There are no surprises here. The SafeData
class wraps an object of class Daa with entry and exit components to
enforce the exclusion control on the core object. For example, given:

class Data {
public void nethodl() { ...}
public void nethod2() { ...}

}

12

Source Code
Concurrency Safe Source
Control —»| Code Wrappers
Expression T
Exclusion Lock
Customisable Code

Figure 3: Exclusion Wrappers
The corresponding SafeData wrapper would look like this:

class Saf eDat af

Dat a dat a;

Excl usi onLock | ock;

public void nmethodl() {
| ock. enter (nmet hod1l D) ;
dat a. net hod1();
I ock. exi t (nmet hodll D);

}

public
| ock.

voi d method2() {
ent er (nmet hod2I D) ;
met hod2();
exit(method2I D);

dat a.
| ock.
}
}

Theent er method testsif the base method specified by the method
identifier is ready for execution, that is, this method is alowed now for
“real” execution after possible blocking by other methods. If the base
method is ready, the gr ab method sets the corresponding bit array in
the conflict matrix.

synchroni zed public void enter (int methodl D) {
/1 method invocation tine
try {
while (!ready(nmethodl D) wait();
grab(net hodl D) /1 method run tinme
} catch (InterruptedException e) { }
}
Theexi t method simply releases the lock by updating the conflict
matrix and then notifying al waiting threads.

synchroni zed public void exit(int methodl D) {
r el ease(net hodl D) ; /1 method end tine
notifyAll();

}

To summarize, given an exclusion expression for an object, the
system defines a control over that object. This gives the programmer
the choice of choosing different levels of exclusion controls for an
object, just by varying the exclusion expression. The separation of
object and concurrency control code is clear: synchronization code is
added to an object via a standardized wrapper with a customized
exclusion lock, and the code of the origina class remains unmodified.

S. EXPERIMENTAL DESIGN

The goal of our experiments is to test the effect of varying the
granularity of exclusion control. We performed anumber of simulation
experiments whose results we present in the next sections.

Our experiments are based on a simple object with eight identical

methods, each implementing a busy loop to provide a fixed duration
for method execution. We investigate the response (in particular,
throughput) for different granularities of exclusion control: full mutua
exclusion; two independent read-write sets, four independent read-
write sets; and full concurrency (no exclusion). In all cases, we use the
same exclusion locking code: only the entries of the conflict matrix
embedded within the exclusion lock change between experiments.

To vary the load on the controlled object in a predictable manner,
we issue periodic method calls, each serviced by one thread drawvn
from a large thread-pool. The role of the thread pool is to isolate the
method call generation from any blocking by the controlled object. We
arethus ableto set the interarrival rate for method calls experimentally.
This experimental design is geared towards measuring performance in
high contention situations, and is appropriate for measuring the relative
performance of locks of varying granularity under high load. We have
not attempted to measure the absolute performance of our locks, so
detailed specification of the processor, OS version, and VM or run-
time version are not particularly relevant. Further we do not present
any peformance figures comparing our general exclusion lock
mechanism with a native mutex. Such extensions to our experiments
may be worthy of further consideration but have not yet been
conducted.

The eight methods (i O 1..8) of the object are designated as readers
or writers. Eight executing threads (ET;) periodically generate calls on
each of these methods. Finally, there is a pool of threads (Tj,
j01..1000) (see Figure 4). Each pool thread can be grabbed by an
executing thread and assigned amethod index to berun.

Figure 4. Simulation Setup

The main goa of this setup is to view the behavior of the core
object under experimentally controlled rates of method call. The thread
pool provides isolation between the blocking behavior of the core
object, and the load generation performed by the executing threads; by
this means we can accurately control the load generated, and not have
any blocking interference (provided of course that the thread pool is
large enough). In summary, each recycled pool thread will call only a
single method, and will itself serve just one executing thread at atime.
The duration of the Simulation is fixed at 20 seconds during which
methods are called at fixed intervals. The experiment is repeated many
times for each interarrival time. The call rate for method invocations is
calculated by:

(Simulation Duration / Interarrival Time) x Number of Methods

So, if the interarrival time is set at 200 ms, the rate at which methods
are called is 800 invocations per simulation experiment. All
experiments were carried out on a Windows 2000 uniprocessor
machine. Each experiment is repeated three times under different
exclusion control levels.

13

Rx8 NN

RWx4 r1W1|"2W2|"3W3|"4W4
RWx2 I, WW, |;r, W,W,
MUTEX W, W, W4 W, Wi W, W, W

The first control level (Rx8) represents a vacuous control where all
methods are readers and may proceed concurrently. The control
(RWx4) represents a fine-grain exclusion control where all writers are
allowed to run concurrently. The third level of control (RWx2) is more
regtrictive where at most two writers are running at a time. The last
control (MUTEX) represents afull mutua exclusion.

The main goal behind this setup is to observe the system behavior
under each exclusion control level. In particular, we are interested in
observing the throughput of the system, that is, the number of
completed methods with respect to the load and under the three main
different levels of exclusion control (RWx4 RWx2 MUTEX). Two sets
of experiments were conducted; the firs set was implemented with
Javaand the other with C#.

The following are some definitions that are related to our experiments
that may mean something different in other contexts:

Throughput: the number of completed methods at the end of
experiment duration.

the difference between when the base method is
dlowed to execute and when the method is
initially invocated.

the actual execution time of a method ignoring
blocking time.

Blocking Time:

Running Time:

Figure 5 depicts the relationship between blocking time and running
time for a single method invocation; essentialy these correspond to
lock request, lock acquisition and lock release times.

invocation run end
4 Y
Blocking Time Running Time
time
Figure 5. Method Times
6. RESULTS FOR JAVA

The first set of experiments was implemented with Java using JDK 1.3
with Sun’s JVM. Figures 6, 7 and 8 depict the throughput, the blocking
time, and the running time respectively. We neglected to test the
vacuous control (no blocking) case, but we would expect the results to
be similar to those for the C# experiments. The x-axis represents the
varying load, that is, the rate at which methods are called during the
experiment. The y-axis represents the number of completed method
cals, representing the throughput. Each mark on the graph represents
the mean value of three observations of the experiment execution.

160 -

140

120 3

100 +

80 -

60

Number of Completed Methods

40 - ¢ Mutex BRWx2 RWx4

n
20 -

0 T T T 1

0 200 400 600
Rate of Method Calls

Figure 6. Throughput under Java

Up to the saturation point, all three levels of exclusion control
behave similarly in terms of the throughput vs. load relation. As the
load increases the throughput levels climb proportional to the load. The
blocking time is close to zero in al three, and the running time is also
constant with MUTEX < RWx2 < RWx4.

After the saturation point, throughput starts to decrease for all three
levels. This is expected since there will be an increassing number of
threads lining up waiting to be processed. Thiswill in turn increase the
demand for the processor’ s resources due to the management of more
threads and more resources are used up for threads in context
switching. Thus fewer resources would be available for method
execution and consequently the total throughput would decrease. Our
genera observation is that there is little difference between MUTEX
and RWx2 results. The fine-grain exclusion RWx4 gives just around 5-
10% of improved throughput under heavy load. Results for blocking
time and running time will be discussed in section 8 when compared to
the C# resullts.

L J
| * Al
*
* |
J n
o n
E
= °*
1 Al
L J
i n & MUTEX BRWx2 RWx4
1 rvwnn
0 200 400 600 800

Rate of Method Calls

Figure 7. Blocking Time under Java

800

14

& MUTEX BRWx2 RWx4
1 |
1 [
Al
°o 1
£
=
b |
n
M0 o o * * * *
0 200 400 600 800

Rate of Method Calls

Figure 8. Running Time under Java

7. RESULTSFOR C#

7.1 Preliminary Resultsfor C#

Initial results under the C# (.NET) implementation are shown in figure
9 which represents the throughput under all four levels of control. Each
mark on the graph represents the mean value of three observations of
the experiment execution. Again, here we can see that thereisamost a
one-to-one relation between the number of threads serving method
cals and the number of completed threads, up to the saturation point
for each of the controls where things start to change. After saturation,
the MUTEX control starts to decrease as the load of the system
increases, whereas the RW controls maintained their pace with a slight
increase a higher loads.

400 -
350 - X
% X
X
é 300 - Xx X]
° X A
s 250 1 X
ki xgom M . “
ks i
2 200 et e o
o
O
< 150 - * °
g
£ 100
2
50 | & MUTEX BRWx2 RWx4 XRx8
0 ‘ ‘ ; ‘
0 200 400 600 800

Rate of Method Calls

Figure 9. C# Throughput Preliminary Results

However, it is also clear that some marks on the graph show a
highly variable behavior and this suggests differences in operating
conditions. One possible explanation for this irregularity is that the
scheduler may be indulging in priority boogting, which is a trick used
by Windows NT to adapt priority levels, which can help to circumvent
priority inversion problems, as well as alow the OS to modify its
fixed-priority schedule. We also noticed a similar irregularity in the
related blocking time graph and the running time graph.

We conducted more extensive experiments to analyze this
behavior. Figure 10 depicts the throughput behavior when run 20 times

for a fixed method call rate. Particularly for the RWx2 and RWx4 data
one can clearly observe a split into two categories. Hence we have
decided to (visually) split al of these measurements into two classes
that we call unboosted (class 1) and boosted (class I1). This admittedly
ad hoc approach hasresulted in much more regular graphs.

400 -
350 -
300 -
250 -
200 -

150

Number of Completed Methods

100

—&— MUTEX —#—RWx2

50 - RWx4 —X—Rx8

0 T T T 1

10 15 20
Run Id

Figure 10. High Variations

7.2 Reclassified C# Results
At each point of the delay time we made 20 measurements for each
control. We then classified the resulting data, ending up with a more
regular presentation of the observations. Figure 11 represents the
throughput vs. load for the unboosted data and Figure 12 represents the
same relationship for the boosted data.

350 -
®MUTEX BRWx2 RWx4 XRx8
300 |
X
X
[%2]
3 250 | % X X
Z X
T 200 - e
g éJ *%e 0 o
£ 'S
E & .
© 150 | g
o
3 R
£ 100 |
b4
R
5075%ga
0 T T T 1
0 200 400 600 800

Rate of Method Calls

Figure 11. Throughput (classification I)

15

400 -
& MUTEX BRWx2 RWx4 XRx8
350 X X
X X
x % n
S 300 - X & =
e e g
= 250 - XX 1y
5] x) ¢
g 200 - A S
S A
S £
S 150 g
£ X
S
2 100 |
X
s
0 T T T 1
0 200 400 600

Rate of Method calls

Figure 12. Throughput Boosted (classification II)

Thetwo resulting graphs clearly show a smoother representation of
the differences between all three levels of exclusion control. All three
controls respond to the system load in a similar way, as al three
controls increase proportionally to the load before reaching ther
saturation points. After the saturation point, a clear separation is
observed between the MUTEX control and the RW controls.

Figure 13 presents the blocking time per method under all
exclusion controls. Initialy, all exclusion controls show low blocking
time before saturation point. As the number of method calls increases
past the saturation points, MUTEX blocking time is considerably
higher than for the other three controls. This result is expected because
RW controls allow more than one thread to access the object a atime.

& MUTEX BRWx2 RWx4 X Rx8
| *
1 .
g .
£
.
| - -
n
V'S n
i n
0 200 400 600 800

Rate of Method Calls

Figure 13. Blocking time under C#

The average running time per method for each level of control is
depicted in figure 14. Here, also as expected, the running time under
the MUTEX control is minimal and congtent; this is because the
MUTEX control always guarantee one active thread a a time, thus
maximum processor’'s resources are utilized. The other three RW
controls show less utilization of resources for each method, and that's
due to the increasing number of threads that are being released, and
thusthe sharing of processor’ s resources among the threads.

800

¢ MUTEX BRWx2 RWx4 X Rx8
|
o [
E1
=
m B

= .

1 --— “..

1 NPOO WP s & o . ¢

0 100 200 300 400 500 600 700

Rate of Method Calls

Figure 14. Method running time under C#

8. JAVAVSC#

As mentioned earlier, we have been able to produce two sets of
experiments tha provide us with results showing some similarities and
some differences too. Throughput graphs under both implementations
show identical behavior before the saturation points. In both sysems,
an obvious pattern of oneto-one relaion between the number of
started threads and the number of completed threads is observed. After
the saturation point, both systems behave differently. The Java graph
shows the throughput slightly decreasing under al three controls,
wheress its C# counterpart shows a decrease only under the MUTEX
control while the other three RW controls show a surprising slight
increase after the saturation point: we find this increase difficult to
explain. Also, C# graph shows a bigger gap between the MUTEX
control and the RW controls.

Blocking time per method is the time spent by each thread waiting
to enter amethod once that thread is launched. Before saturation point,
blocking time for both Java and C# (Figures 7 and 13) shows a similar
trend where al threads under all controls experience amost no
blocking time. Java blocking times sart to increase sharply after the
saturation point with little difference between the controls. This
expected behavior is not totally manifested in the C# blocking time
graph. The C# blocking time for the MUTEX control is similar to the
Java counterpart. After saturation points, the other three RW controls
surprisingly start to drop after gaining some increase.

Running time graphs (Figures 8 and 14) represent the time a thread
actually takes to execute within the core object. In this case we expect
to see a minimum and constant time for the MUTEX control
throughout the simulation run, and that's clearly observed under the
two implementations. The RW behavior on the other hand shows a
similar and expected pattern in both implementaions. As mentioned
earlier, RW control allows multiple threads to be active concurrently,
consequently, the processor’s resources are shared among threads for
method executions, thus methods take longer to complete.

Although the two implementations of the same simulation model
are amost identical in terms of program logic and flow, results under
C# show clear differences between the full MUTEX control and the
less redtrictive RW controls. At the time the Java throughput graph
shows a slight decrease as the system load increases, C# throughput
graph shows a dight increase for the RW controls as the load increases.
An obvious difference appears when comparing the blocking graphs of
both implementations. It's evident that thread management algorithms
work differently in the two environments.

16

The Java implementation was developed first and then the C# one.
The similarities between Java and C# allowed us to rewrite Java
programsin C# with little effort. However, there remained some design
issues for the threading model. Java presents a hierarchical model
where its threads are created by subclassing the java.lang.Thread dass
and overriding its run() method or by implementing the
java.lang.Runnable interface and implementing the run() method. On
the other hand in C#, one creates a thread by creating a new
System.Threading. ThreadStart object and passing it a delegate which is
initialized with the method that is to be run as athread.

9. DISCUSSION

Our concern with these experiments has been to make relative
comparisons, and we have made no atempt to look at absolute
performance issues. Our motivation for looking at both Java and C#
was to see if the effects of variable locking granularity were consistent
across both environments. In general, we can say that there is indeed
much in common in our observations. First, under low load conditions,
varying granularity makes little difference to overall performance. For
isolated applications, the differences appear when we overload the
controlled object. In all cases, finer-grained controls resulted in better
system throughput than did a mutex strategy. This reassures us in two
complementary ways:. employing finer-grained control imposes no
extra unforeseen runtime overheads; and, it is actually beneficial under
heavy-load conditions.

Overall the observations that surprised us most were the high
variability of our initid observations in the C# environment. Our
further detailed observations are consistent with this variability being
caused by some kind of adaptive thread management such as priority
boogting. We have compensated for this by partitioning our data into
two cases; this provides more regularity in our observations. The other
surprise bears further investigation: why does the throughput under
heavy load for C#, RW, continue to increase, albeit a a dower rate,
after saturation?

9.1 Further Observations

One further observation is quite obvious on afterthought, but is still
interesting to note. With our Java experiments we produced a small
demongration displaying the concurrent execution of the various
method bodies under the three different exclusion controls. We ran the
three displays in parallel, one for each level of locking granularity. Lo
and behold, the fine-grained display raced away with its methods
executing “concurrently”; after it terminated, the intermediate level
control display raced ahead; and finally, when left on it's own, the
mutex display sped up. This arises simply because the finer-grained
control allows a grester number of active threads, it is able to grab a
proportionately bigger chunk of the CPU resource. This suggests that
we could choose to use finer-grained locking to increase our share of
the CPU resource. In a truly competitive situation though, this
argument does wear thin, for what we have is essentially a zero-sum
game.

Another observation took us by surprise. The MUTEX measurements
reported in this paper have al used the same exclusion lock as the
other locking strategies, but with the conflict table configured for
mutual exclusion. However, with Java, we also ran the experiment with
a conventional synchronization wrapper. Given that our exclusion lock
itself uses synchronization, we were surprised that in its MUTEX
configuration, it performed marginaly better than the conventional
synchronization wrapper. We did not investigate this further, and
without being privy to the details of synchronizaion in the WM, we
can only surmise that this is ether some inefficiency of the
synchronization mechanism, or perhaps that we have cheated by not
making our lock reentrant. It would be interesting to check this with
the new synchronization primitives in Java 1.5.

9.2 Reentrancy

In implementing our general-purpose exclusion lock, we chose not to
make the lock reentrant. Clearly this simplifies the implementation
because otherwise we would need to track thread identifiersin the Sate
of the lock for all admitted threads. The exclusion model is implicitly
more complex to reason about: any reentrant thread should only be
permitted to reenter with the same “permission” it was granted in its
original access. This implies tha a programmer must be able to track
these dependencies, in order to specify the exclusion requirement in the
firg place. In fact, in contexts where wrappers are gpplicable, there is
an assumption tha self-calls by the core object are not controlled, so
there is no need to handle reentrant self-calls. If other externd call
cycles are permitted, we suspect that alternative, more complex locking
drategies should be employed. All being said though, there is no
particular difficulty in providing a reentrant implementation of the
general-purpose exclusion lock.

9.3 Language vs Tools Support

We believe that providing programmers with smple means to achieve
better control over the synchronization is achievable based on the
implementation experiments we have conducted. The exclusion
controls are easy to specify, provided the programmer understands the
read-write effects on shared components by its methods.

The smplest way to provide this support would be to write factory
methods for exclusion controls, parameterized by the object’s type and
an exclusion expression. Using reflection it is straightforward to set up
the gppropriate tables for managing the exclusion lock, and to
dynamically generate the wrapper code. This code needs to be created
dynamically, or else there needs to be a standard (preferably efficient)
way to bind method calls to entries in a table. Without method call
reification, dynamic code generation, compilation and loading, seems
to be theway to go.

Although the dynamic approach is probably the easiest way to proceed
in the short term, we believe that there is scope for language extensions
that admit customization of object congruction by the compiler. For
example, if we could couple an exclusion expression with an object
creation statement, then a compiler would be able to provide specific
versions of a class with direct implementation of the exclusion control,
without using wrappers. This is similar to the way in which class
templates are instantiated in C++: each different instantiation generates
new code. For us, code bloat could be limited by restricting to two
versions of the class. synchronized and unsynchronized. The task of
the compiler would then be to ingtantiate the conflict table for the
exclusion control for each different exclusion expression used, as part
of the object data.

Finally we would like to see language support for class implementers
to express the exclusion contract. This amountsto an ability to write an
excluson expression that specifies the minimum exclusion
requirements of the class; such requirements will be implementation
dependent. Client code mugt meet these requirements, either by
directly providing an gppropriate synchronization control, or by
operating within a controlled environment (for example, being single-
threaded). Such regquirements are quite similar to specifying read-write
effects, except that the requirements do not need to specify what is
being affected, but rather what the read-write conflicts are between
different methods.

10. CONCLUSION

We have conducted experiments to compare the effect of locking
granularity for exclusion controls in both Java and C# environments.
These experiments have conclusively demonstrated that there need be
no performance penaty in implementing a fine-grained locking
drategy. For isolated applications under low load there is negligible

17

performance difference with varying locking granularity. However, at
hotspots where an object is not coping with its load, finer-grained
control yields improved system throughput. The improvement gppears
to be relatively greater with C#, but we have not investigated possible
explanationsfor this.

For a programmer, such fine-grain controls are trivial to specify,
either using a textual form such as that offered by the algebra of
exclusion, or by some other conflict matrix associated with an object’s
interface. It isthen relatively straightforward to automatically generate
synchronization code or wrappers tha implement the specified
exclusion control. A side-benefit of encouraging this approach for
incorporating thread-safety is that the minimal required exclusion can
be documented as part of the object’ s contract, thereby providing some
further information about the read-write effects and underlying sharing
between different methods, without any need to expose implementation
code and data.

10.1 Acknowledgments

The authors thank the anonymous reviewers for the effort and attention
they gave to their comments and criticisms, which have helped us to
express the goals of our experiments more clearly.

11. REFERENCES

[11 AntonioJ. Nebro, Enrique Alba, Francisco Luna, José M. Troya
.NET as a Platform for Implementing Concurrent Objects
(Research Note). Euro-Par 2002: 125-130.

Fraser, T., Badger, L., Feldman, M. (1999): Hardening COTS
componentswith generic softwarewrappers. Proc. 1999 IEEE
Symposium on Security and Privacy. IEEE Computer Society
Press.

Holmes D., Noble J. and Potter J., Aspects of Synchronization,
Proceedings of the Conference on Technology of Object-
Oriented Languages and Systems (TOOLS Pacific *97), IEEE
Computer Society, ISBN 0-8186-8485-2, pp 2-14, 1998

Holmes,, D., Synchronization Rings- Composable
Synchronization for Object-Oriented Systems. PhD thesis,
Macquarie University, Australia, 1999.

(2]

(3]

(4]

[51 JSR-166 Concurrency Utilities, Java Concurrency Process.
Www.jcp.org

Kleinrock, L., Queueing Systems, Volume I1: Computer
Applications , Wiley Interscience, New York, 1976.

LeaD. Concurrent Programming in Java: Desgn Principlesand
Patterns, (2™ Edition) Addison-Wesley, 1999

Noble J., Holmes D., and Potter J., Exclusion for Composite
Objects, Proceedings of ACM Conference on Object-Oriented
Programming, Systems, and Languages OOPSLA 2000,
Minneapolis, USA, 2000.

Philippsen, M., A Survey of Concurrent Object-Oriented
Languages, Concurrency: Practice and Experience 12 (2000)
917-980.

Rez, Theo Harder, Concurrency Control Issuesin Nested
Transactions with Enhanced Lock Modes for KBMSs, DEXA'95,
6th International Conference and Workshop on Database and
Expert Systems Applications, 1995.

Suh-Yin Lee, Ruey-Long Liou: A Multi-Granularity Locking
Modé for Concurrency Control in Object-Oriented Database
Systems. IEEE Trans. Knowl. Data Eng. 8(1): 144-156 (1996).

Zhang X., Potter J., Responsive Bismulation IFIP TCS 2002:
601-612.

(6]

[

[10]

[11]

[12]

Dynamic Inference of Polymorphic Lock Types

James Rose
rosejr@cs.umd.edu

Nikhil Swamy
nswamy@cs.umd.edu

Michael Hicks
mwh@cs.umd.edu

Computer Science Department
University of Maryland, College Park

ABSTRACT

We present an approach for automatically proving the ab-
sence of race conditions in multi-threaded Java programs,
using a combination of dynamic and static analysis. The
program in question is instrumented so that when executed
it will gather information about locking relationships. This
information is then fed to our tool, FINDLOCKS, that gener-
ates annotations needed to type check the program using the
Race-Free Java [12] type system. Our approach extends ex-
isting inference algorithms by being fully context-sensitive.
We describe the design and implementation of our approach,
and our experience applying the tool to a variety of Java
programs. We have found the approach works well, but has
trouble scaling to large programs, which require extensive
testing for full coverage.

1. INTRODUCTION

Writing correct multi-threaded programs is much more
difficult than writing correct sequential programs. As Java’s
language and library support has brought multi-threaded
programming into the mainstream, there has been widespread
interest in developing tools for detecting and/or preventing
concurrency errors in multi-threaded programs, including
race conditions, timing dependencies, and deadlocks. There
are two main approaches. Static approaches, such as those
based on type systems, take a program annotated with lock-
ing information and prove that the program is free from
certain multi-threaded programming errors. A canonical ex-
ample is the Race-Free Java type system [12]. Dynamic ap-
proaches monitor the execution of the program to discover
violations of locking protocols based on observed execution
history. A canonical example is Eraser [23].

On the face of it, these two techniques that address the
same problems seem very far apart.

e The static approach is appealing because static anal-
ysis can conservatively model all paths through a pro-
gram. When a sound static analysis can show a fact,
that fact must hold in all executions. Thus static anal-
ysis can prove the absence of errors such as race con-
ditions and deadlocks without ever running the pro-
gram, and without requiring the overhead of run-time
code monitoring. The downside is that because static
analysis must be conservative, it will incorrectly signal
errors in correct programs. Such false alarms can be re-
duced, but not eliminated, by employing sophisticated
techniques—e.g., context-, flow-, or path-sensitivity—
but at the cost of scalability and implementation com-

18

plexity.

e The dynamic approach is appealing because run-time
code monitors are relatively easy to implement and are
less conservative than static analyses [17], in part be-
cause they have complete, precise information about
the current execution state. The downside of the dy-
namic approach is that dynamic systems see only cer-
tain executions of the program, and so in general they
can only conclude facts based on those cases. This
means that either the code monitor must be packaged
with the code permanently, or else run the risk of post-
deployment failures.

Because static analysis can reach sound conclusions' and
imposes no runtime overhead, we believe it to be the pre-
ferred approach whenever possible. However, as we have
just discussed, the limitations of static analysis sometimes
make it “too hard.” Indeed, many static analyses require
users to provide additional program annotations to guide
the static analyzer. Experience has shown that program-
mers are reluctant to provide any but the most minimal
annotations. For example, the designers of ESC/Java [15]
state that such reluctance “has been a major obstacle to
the adoption of ESC/Java. This annotation burden appears
particularly pronounced when faced with the daunting task
of applying ESC/Java to an existing (unannotated) code
base.” [14].

1.1 Dynamic Annotation Inference

An annotation inference tool can reduce or eliminate the
need for annotations. A typical approach is to use a whole-
program, constraint-based analysis [2]. For detecting race
conditions, such an analysis must consider the aliasing re-
lationships between objects in the program. Unfortunately,
the state-of-the-art in scalable points-to analysis can be im-
precise when modeling common linked data structures, such
as lists and trees. These analyses often model elements of
a linked structure as a single abstract location, and thus
will fail to distinguish between a lock that protects one list
element versus another.

In contrast, a dynamic analysis has ready access to pro-
gram objects and their aliasing relationships. Therefore,
we could use a dynamic analysis to generate candidate an-
notations [14] based on its observations, and these can be
checked by the static system. The intuitive idea here is that,

'Not all static analyses are sound. Indeed, unsound “pat-
tern detectors” have proven to be quite useful for finding
bugs [10, 18].

just like for problems in NP, it may be difficult to generate
correct statements about a program, but it is easy to check
them. We call this combination of dynamic and static anal-
ysis dynamic annotation inference.

1.2 Contributions

We are exploring the possible benefits of dynamic anno-
tation inference. In this paper, we describe the progress we
have made on a prototype system that employs an Eraser-
like dynamic analysis to generate candidate annotations for
the Race-Free Java (RFJ) type system [12]. This paper
makes the following contributions:

e We present a new algorithm (Section 2) for dynamic
annotation inference. Our algorithm improves on prior
static [14] and dynamic [1] algorithms in being fully
context-sensitive (polymorphic), and thus is able to
infer types for more programs.

e We describe our experience applying our tool FIND-
Locks to prove the absence of race conditions in a
number of variously-sized Java programs (Section 3).
This experience speaks to both the power of the static
checking system (RFJ) and the efficacy of dynamic in-
ference. We extend prior studies in both areas [13, 1].
In our experience, dynamic inference imposes reason-
ably little runtime overhead, and infers most needed
annotations.

e After comparing to related work (Section 4) we present
a number of lessons learned, and lay out a path for con-
tinuing work (Section 5). Two key lessons learned are
as follows. First, dynamic analysis can frequently dis-
cover properties that typical type-based static analyses
cannot check. We must consider new, path-sensitive
static analyses that can take advantage of dynamically-
discovered information. Second, the larger the pro-
gram being checked, the more difficult it is to write
test cases that cover all its code. In the end, we be-
lieve the most effective approach will be to combine
static, whole-program analysis with dynamic traces to
improve the quality of the inferred types.

2. DYNAMIC LOCK TYPE
INFERENCE

To check for race conditions, most static and dynamic
tools seek to infer or check the guarded-by relation. This re-
lation describes which memory locations (and possibly what
sequence of operations) are guarded by which locks. As-
suming that this relation is consistent, we can be sure that
a particular data object or operation will only be accessed
when a lock is held, thus ensuring mutual exclusion. In a dy-
namic system like Eraser [23], the guarded-by relationship is
inferred at run-time. In static type checking systems, types
expressing what locks guard which locations must be speci-
fied by the programmer as annotations, though well-chosen
defaults can make the task easier.

2.1 Race-Free Java

The RFJ type system requires that each field f of class
C be guarded by either an internal or an external lock for
f. To prevent race conditions, this lock must be held when-
ever f is accessed. An internal lock is any “field expres-
sion” in scope within class C, i.e., an expression of the form

19

this.f1.f2...fnorD.f1.f2...fn, where £1 is a static field
of D. An external lock is one that is acquired outside the
scope of C by users of C’s methods or fields. In RFJ, an ex-
ternal lock is expressed as a class parameter called a ghost
variable. The guarded-by annotation can refer to this vari-
able as if it were a local field; however, it cannot be acquired
within the class, because it is a type-level variable that exists
only at compile-time. All locks must be final.

Here is a small example of a class that contains both an
internal and external lock:

class C<ghost Object o> {
int count guarded_by this;
int value guarded_by o;
synchronized void set(int x) requires o {
count++;
value =
}
}

C’s field count is guarded by this, an internal lock, while
value is guarded o, an external lock. The method set en-
sures these locks are always held when the fields are accessed.
In particular, the fact that set is synchronized means that
the lock this is held when it executes, and thus accessing
count is legal. In addition, the requires clause ensures that
o is held whenever set is called.

A ghost variable is instantiated when the object is created.
For example:

X3

C<this> x = new C<this>();

synchronized (this) {
x.set(1);

}

This code fragment creates a C object, instantiating its ex-
ternal lock with the current object. Thus, the call to x.set (1)
is legal, because the external lock is held before the call.

RFJ also supports the notion of a class whose objects
are never shared between threads (they are thread local),
and thus no lock need be held to access their fields. This
mechanism for thread-local data is a weakness of the RFJ
type system, as we elaborate further in Section 3.

2.2 Dynamic Annotation Inference

Our goal is to automatically infer guarded_by and requires
annotations for unannotated Java programs. To do this, the
target program is instrumented and executed, and we use an
Eraser-like algorithm to infer the guarded-by relationship
dynamically. The results are used to generate candidate an-
notations that can be checked statically.

During execution, for every object o and field £ we main-
tain the set lockset(o,£). The lockset is the set of locks that
are consistently held when accessing o.f. In Eraser, locks
and objects o are merely machine addresses. We must ad-
ditionally store statically expressible “names” for each lock.
These names are of the form (C,L), such that within an in-
stance of class C, L is a valid field expression for the object.
Because some objects have an infinite number of potential
names (e.g., List.next.next.next ... for a cyclic linked
list) we set a constant maximum length for the names.

We also maintain a set containing all locks currently held,
and their names. Every field access uses this set to refine the
lockset for the involved object/field pair: the set of objects
in the lockset is intersected with the set of locks currently
held; additionally, the set of names for each object in the
lockset is intersected with the set of names that is currently
valid for that lock.

Once the execution has completed, we attempt to resolve
each field’s lockset into either an internal or external lock.
Consider the result set:

R(C.£) = {(o,1s) | Is = lockset(o, £)}

If we can find a single field expression L within the scope of
C such that, for all (o,ls) € R(C.f), L names an object in s,
then we have found an internal lock for C.£f. In the common
case, this means simply looking for a field of C, preferably
this, that guards f in every instance of C. We also consider
static fields of another class if no internal field exists.

If no internal lock exists, we must parameterize C and
look for names at C’s allocation sites. Let allocsite(o) be
the allocation site where the object o was allocated. Let
allocator(o) be the address of this when o was allocated.
We can partition the result set based on allocation site I, as
follows:

(o,1s) € R(C.£)
I = allocsite(o)
a = allocator(o)

R(C.£)[I] (a,ls)

R(C.£)[I] can be used to compute the value of the instan-
tiation parameter for £ for objects created at allocation site
I, just as R(C.f) contained the information that was used in
the initial attempt to resolve an internal lock for f.

In other words, we consider separately the n locations
where C is allocated, and attempt to provide a lock name for
f that is valid at that location. Because the set associated
with each location is smaller than the original set (when
n > 1), it is possible that each subset is resolvable (i.e.,
will have a consistent name for the protecting lock) even
when the original set is not. If a subset is not resolvable,
we repartition the subset: because the partitions have the
same structure as the original set, this procedure can be
repeated recursively until we reach a static allocation site.
Each repartitioning adds a class parameter to the class to
be instantiated.

Because each field’s lock is resolved separately, a class will
initially have as many parameters as it has externally-locked
fields. Because classes rarely use more than a single external
lock, these parameters will generally be redundant. Thus,
FinDLocks will merge parameters if, at every instantiation
site, the parameters are equivalent.

Consider the example of external locking shown in Fig-
ure 1 adapted from JAVA-SERVER, one of our case studies.
Here the class CircList is used as a buffer for log messages.
The class provides no synchronization constructs of its own.
Instead, the client LocalLog protects accesses to the buffer
using itself as the lock.

When attempting to infer the guarded_by clause of the
alist field of CircList, FINDLOCKS is unable to discover a
candidate among the names within the scope of CircList.
By examining the set of names available at the allocation
site of CircList within LocalLog, FINDLOCKS is able to
add the appropriate instantiation parameter for clist and
make the type of CircList polymorphic in the lock.

The above description omits one important special case:
classes which allocate themselves. An example is an ex-
ternally guarded linked list, where each element creates its
successor. If we were to use the above algorithm on such a
list, we would end up with as many parameters as there are
elements in the list. The initial partitioning of the set would

20

class Locallog {
CircList<this> clist guarded_by this;
LocalLog(int size) {
clist = new CircList<this>(size);
}
synchronized void add(LogRecord 1r){
clist.add(1r);
}
}

class CircList<ghost Object _1>{
ArrayList alist guarded_by _1;
CircList(int size) requires _1 {
alist = new ArrayList(size);
}
boolean add(LogRecord lr) requires _1 {
if (isFull()) {
int oldestIdx = getOldestIndex();
alist.set(oldestIdx, 1r);
}
else alist.add(1lr);
return true;
}
}

Figure 1: Example of Polymorphic Locking

result in a set of size one (containing the head of the list),
and a set of size len — 1, containing the rest of the elements;
len — 1 subsequent repartitionings would be required to each
the ancestral allocator of the tail of the list, outside of the
list class.

To solve this case, we require that every instantiation site
of class C within class C must supply the allocated class with
the same parameters that it received; i.e., class C<a,b> will
only allocate C as C<a,b>. In effect, we forbid polymorphic
recursion of class parameters.

Now, the resolution on result sets is thus changed so that,
instead of partitioning objects based on their allocation sites,
they are partitioned based on their most recent external an-
cestor in the tree formed by the allocation relation {(a,o0) |
a = allocator(o)}. For example, assume there are three
classes C, D, E which each create a linked list of ten elements
of class L. Even though 27 of the elements were allocated
within class L, a single recursive step will result in all 30 ob-
jects being associated with the allocation sites of the head
elements within C, D, and E, skipping the sites within L.

2.3 Implementation

FINDLOCKS executes in two phases. First, the target pro-
gram is instrumented using the BCEL [7] bytecode manipu-
lation library and executed. During execution, we track field
writes to maintain the mapping between the objects and
names; we track lock acquire/release to maintain the set of
locks held and their names; and we track field reads/writes
in order to determine the locks that are consistently held for
every object/field pair. We also record the allocation site of
every object, to be used in resolving external locks. We do
not need to instrument bytecodes that read and write local
variables: their names are not relevant, because they can’t
be locks; and, because the analysis is dynamic, we always
have the identity of objects when they are used. Once exe-
cution terminates, we resolve the locksets as described above
to produce annotations. These annotations are added to the
source code by an external tool, which is then checked by
RcceJava, a type-checker for RFJ.

It should be noted that most JVMs make strong assump-
tions with regard to the layout of the certain core classes,
particularly those in the the java.lang package. Our tech-
nique involves instrumenting all application code and, only
where permissible, instrumenting library classes. We have
found that in certain situations it is not straightforward to
instrument packages such as java.util since there exist cir-
cular dependencies from this package to other packages such
as java.lang which may not be modified. To avoid this
problem, core library classes could be annotated manually;
this would only need to be done once.

3. EXPERIMENTAL RESULTS

In this section, we describe our experience using FIND-
Locks on a number of Java programs. We present the
runtime overhead of running FINDLOCKS. Next we address
the accuracy, expressiveness and completeness of the anno-
tations emitted by FINDLOCKS. Finally, we describe our
experience using our tool on a large program.

3.1 Sample Programs

Table 1 lists our benchmark programs, with relevant statis-
tics in the first two columns. Classes refers to the number
of classes that were instrumented. The numbers in paren-
theses indicate the number of library classes that were in-
strumented. LOC is the number of non-comment non-blank
lines of code.

The programs ELEVATORS1 and ELEVATORS2 were writ-
ten by students at the University of Maryland as part of
CMSC433, a course in object-oriented programming. They
simulate the scheduling of elevators in a building. Each
program came with its own test cases that ran various sim-
ulations. For both ELEVATORS programs we were able to
instrument the 152 classes that form the java.util library.

The program PrROXY-CACHE was adapted from a program
developed at the Technion, Israel Institute of Technology.
It comnsists of an HTTP proxy that runs on a local server.
It also provides content caching. Our test cases consisted
of stressing PROXY-CACHE with concurrent requests using
HTTPERF [19)].

WEBLECH is a small web-crawler that was adapted from
a program developed at MIT. To test WEBLECH we had it
perform a depth 1 crawl from the University of Maryland
home page.

JAVA-SERVER is small HTTP server that was developed
at the University of Maryland. The program came with its
own test cases that consisted of placing about 50 requests
to the server.

3.2 Runtime Overhead

In Table 1 the column Orig refers to the maximum mem-
ory and elapsed time consumed by the program prior to
instrumentation. The columns labeled Instr refers to the re-
sources consumed by the instrumented program. The Annot
columns refer to the resources consumed while annotating
the source-code with the results of the inference. In each
case, the numbers represent the median value from ten tri-
als. The variation is not appreciable. These measurements
were performed on a 2 GHz Pentium 4 with 750MB of RAM.

In each of these cases the overhead incurred by the instru-
mented code is within acceptable limits. While the resources
used by the annotation phase may appear extravagant, it
should be noted that this phase can easily be integrated

21

into the RccJAvA framework. The cost of annotation can
thus be amortized against the cost of analysis performed by
RocJAava. We report the expense of the annotation phase
only for completeness.

3.3 FmvoLocks and RecJava

Table 2 describes the results of running RccJAvA on the
annotated programs. The column Classes shows the number
of classes that were actually annotated. Classes contain no
annotations if either the test cases did not cover the class, or
sometimes if the class contains no fields. The column Auto
refers to the number of annotations that were added auto-
matically by FINDLOCKS. In a few cases we were required
to add annotations manually. These are recorded in the col-
umn Manual. The section of the table labeled Rcc Warnings
classifies the type of warnings issued by RCCJAVA when run
on the annotated programs. Thl represents spurious race
condition warnings about fields that are in fact thread local,
or are read-only. The column Final records RCCJAVA warn-
ings about the use of locks that are not final expressions.
These are spurious warnings too, since, in each case, the
lock expressions, though not final expressions, are actually
constants. The column Race records warnings about real
race conditions.

It is clear from the table that the overwhelming majority
of warning issued by RCCJAVA refer to thread local fields.
Our analysis is able to easily discover when a field is accessed
only by a single thread, or if the field, after initialization, is
a read-only field. Furthermore, FINDLOCKS notes in partic-
ular the case where an object is constructed by one thread
and is then handed off to another thread. In each of these
cases FINDLOCKS annotates the source with comments (in-
visible to RCCJAVA) that assists the user in classifying Rcc-
JAVA warnings as spurious or genuine. These results reflect
the weakness of the RFJ type system’s handling of thread-
local data. A more advanced type system would be able to
check these usages [8, 16].

The dynamic analysis also assists the user in ignoring
RccJAvA warnings about non-final expressions used as locks.
The read-only annotations added by FINDLOCKS help the
user to confirm that lock expressions are constant. This
was particularly useful in the case of WEBLECH. Again, a
stronger static analysis would be able to check these cases.

Manual annotations were added in some cases to suppress
some warnings. For example, RCCJAVA (optionally) assumes
that the this lock is held during object construction in or-
der to allow for common initialization patterns; this is sound
if the constructor does not allow this to escape. However,
ELEVATORS]1 uses a dummy object as a mutex instead of
synchronizing on this. Thus, in the constructor of the ob-
ject, RccJAvA issues warnings about the mutex not being
held. Despite adding the annotation to escape these warn-
ings ELEVATORS] fails to typecheck under RCCJAVA because
it contains a real race condition. This race condition is also
detected by FINDLOCKS. In this case, FINDLOCKS adds a
comment to the field noting the problem.

ELEVATORS2 uses an external synchronization mechanism
to guard instances of java.util.HashSet. That is, there
is a field elevators of type HashSet and each access to
this field is protected by obtaining a lock external to the
scope of the HashSet. FINDLOCKS infers that HashSet has
a type that is polymorphic in the type of the lock. FIND-
Locks correctly annotates the java.util.HashMap field of

Program Classes | LOC Memory (MB) Time (sec)
Orig Instr Annot | Orig Instr Annot
ELEVATORS1 4(+152) 567 8.8 48.1 110 8.9 10.0 23.0
ELEVATORS2 4(+152) 408 8.7 46.6 112 8.4 10.2 22.6
PROXY-CACHE 7 1218 12.0 49.7 112 9.8 21.4 14.9
WEBLECH 12 1306 33.1 48.7 127 17.5 18.8 20.3
JAVA-SERVER 36 1768 10.3 37.4 126 7.0 7.9 15.2
Table 1: Runtime Overhead for FINDLOCKS
Program Annotations Rcc Warnings
Classes Auto Manual | Thl Final Race Oth

ELEVATORS1 3 26 1 5 0 1 0

ELEVATORS2 6 27 0 1 0 0 0

PRrROXY-CACHE 7 69 0 15 0 0 4

WEBLECH 11 52 4 30 10 0 1

JAVA-SERVER 18 59 2 5 0 0 0

Table 2: Checking Annotated Programs

the HashSet field as being guarded by the lock parameter.
Furthermore, an inner class of HashMap, HashMap.Entry is
also parameterized by the same lock parameter. (This is
why ELEVATORS2 annotates six classes: three are from the
program itself, and two are from the standard library.)

JAVA-SERVER also uses a similar external synchronization
construct as described in Section 2.2. Two manual annota-
tions were required to handle a class that was not executed
by our test cases.

We were able get PROXY-CACHE to type check without
any further annotations. RCCJAVA does, however, issue
warnings regarding two fields of array type. The contents
of the arrays are read-only and do not require any synchro-
nization.

Attempting to type-check WEBLECH reveals another lim-
itation of RccJAvA. The code in Figure 2 is illegal in Rcc-
JAVA: even though every access to the field Spider.q is
guarded by Spider.q, it is not possible to instantiate the
lock parameter of the DownloadQueue object with Spider.q.
Using a separate mutex allows the lock parameter to be in-
stantiated correctly.

WEBLECH also reveals a problem associated with subtyp-
ing of methods in the presence of requires annotations. The

DownloadQueue object overrides the Object.toString () method

in which it accesses all its fields. But annotating the over-
ridden method with a requires clause that contains the lock
parameter is illegal since required lock sets on function types
are contravariant with regard to subtyping. Thus, an asser-
tion that the lock was held was added to handle this case.

3.4 Scaling to Large Programs

We also ran FINDLOCKS on HSQL?, an open-source, JDBC-
compliant database. HSQL consists of 260 classes and about
55000 lines of code. Unfortunately, we did not have access to
a comprehensive test-suite for the application. Instead, we
devised a simple test program that spawned a large number
of threads and repeatedly performed simple queries on the
database.

We found both the runtime overhead as well as the anno-
tation overhead to be acceptable. However, the accuracy of
the annotations that were inserted were greatly undermined

2http://hsqldb.sourceforge.net/

22

class Spider {
DownloadQueue<q> q guarded_by q;
Spider() {
q = new DownloadQueue<g>();
}
URL nextURL(){
synchronized(q) {
return q.nextURLQ) ;
}
}
}
class DownloadQueue<ghost Object _1>{
ArrayList urls guarded_by _1;
DownloadQueue() requires _1 {
alist = new ArrayList();
}
URL nextURL() requires _1 {
return urls.remove(0) ;
}
String toString() requires _1 {
return urls.toString();
}
}

Figure 2: Illegal Code snippet from WEBLECH

by the extreme simplicity of the test case. Our test case
only managed to cover some 90 out of the 260 classes. The
annotations generated are thus skewed with respect to the
particular execution trace that the instrumented program
generated.

A large number of the 208 warnings issued by RCCJAVA were

with regard to fields that were marked thread local by FIND-
Locks. While the inability to handle thread-local fields is
an obvious limitation of RccJAVA, the accuracy of the an-
notations generated by FINDLOCKS is also questionable. As
with any dynamic analysis, FINDLOCKS is limited to draw-
ing unsound conclusions about the program based only on
the executions that the analysis has witnessed. A stronger
type system is needed in this case.

In light of this experience, it becomes clear that our ap-
proach is most likely to succeed when it complements a thor-
ough testing regime. Achieving a good degree of code cov-
erage is essential to inferring correct lock relationships from
program traces.

4. RELATED WORK

Our approach is an example of what we call a dynamic-
static analysis, in which dynamically-gathered information
is used to support or improve a static analysis. FErnst’s
Daikon tool [11] infers simple invariants between variables in
a program through run-time profiling. Nimmer and Ernst [20,
21] showed that many of the inferred invariants could be
proven sound using a theorem prover. In their approach,
dynamically-determined invariants are part of a candidate
set, and the theorem prover removes those invariants that it
cannot prove. Specification mining [4] is a technique for au-
tomatically discovering sequencing and data constraints on
APT calls. The information may be useful for a static veri-
fication tool. The most common example of dynamic-static
analysis is profile-directed compilation [5, 6, 22, 25]. In this
case, generated code is improved by considering run-time
profiles. This is a matter of performance, not correctness,
so poor profiling information will not cause the program to
produce the wrong answers.

A wide variety of type-checking systems have been devel-
oped for preventing possible race conditions. However, we
know of only two approaches that infer types for such sys-
tems, to relieve the annotation burden on the programmer.
Houdini [14] is a self-described annotation assistant that
statically generates sets of candidate annotations based on
domain knowledge. Houdini was applied to a simplified ver-
sion of RFJ [13]. Unfortunately, Houdini does not support
external (polymorphic) locks, restricting the set of programs
for which it can infer types.

Concurrently with us, Agarwal and Stoller [1] developed
a dynamic inference algorithm for the Parameterized Race-
Free Java (PRFJ) [8] type system. Their algorithm is simi-
lar to ours in many respects. One difference is that it is not
fully context-sensitive in that it handles polymorphic instan-
tiation, but not polymorphic generalization. In particular,
it assumes that either a class has a single lock parameter,
or if the class has multiple parameters then the user has
annotated it as such. With the knowledge of these lock
parameters, their algorithm can infer how to most appropri-
ately instantiate them. Our algorithm not only instantiates
lock parameters, but can infer them as well by maintaining
an allocation map between an object and the object that
allocated it. This allows us to generalize (or "resolve” using

23

our terminology) to arbitrary depth in the allocation chain,
creating as many parameters as needed. This is particularly
useful for library-like functions, like the CircList class we
used as an example, which may wish to admit a variety of
locking patterns. Agarwal and Stoller’s algorithm handles
some advanced features of PRFJ not present in RFJ, such
as unique and read-only objects. It would be interesting to
carefully consider how the two approaches could be com-
bined, as we discuss below.

5. CONCLUSIONS

Our experience thus far leads us to believe that dynamic
analysis can usefully perform annotation inference. Since
programmers typically write tests for their programs, dy-
namic annotation inference imposes only a small burden,
and adds value by proving sound properties, in our case the
absence of race conditions, based on collected traces. In-
deed, our tool inferred the majority of annotations needed
for idioms RFJ could check. Moreover, a number of ap-
plications made use of external locking, and our approach
correctly parameterized classes to express this fact, an im-
provement over past work [1, 14].

However, our experience has exposed two limiting factors
in the technique:

1. In general, a given static analysis may not be able to
verify properties easily detected by dynamic analysis.
For example, RFJ does not support treating classes as
thread-local on a per-field basis. It also cannot check
temporal shifts in protection, such as an object that
is thread-local at first, but later becomes read-only or
shared and locked. Our dynamic tool discovered these
situations easily, but the static analysis could not check
them.

The solution is to develop a stronger complementary
static checking system. Indeed, PRFJ fixes the first
problem, and, to a limited degree, the second, by al-
lowing uniquely referenced objects to be unguarded.
This is sufficient to allow hand-offs between threads,
which are supported in RFJ only by escapes from the
type system. (Other idioms, such as barrier synchro-
nization, remain uncheckable.) The type inference al-
gorithm for PRFJ developed by Agarwal and Stoller [1]
is able to indicate uniquely referenced objects (using a
complementary static algorithm described in [3]). An
immediate possibility for future work is to develop an
inference algorithm for PRFJ that combines this abil-
ity with our algorithm’s ability to infer multiple owner
parameters, which are analogous to external locks in
RFJ.

A more ambitious approach would be to develop a
more sophisticated type system which requires more
annotations, since we have a tool to assist with an-
notation inference. For example, dynamic analysis
can easily and efficiently capture the program exe-
cution paths for which a safety property holds. To
make best use of this information, our static check-
ing system should be path sensitive. Type systems
with intersection-, union-, and dependent types can
describe path-sensitive properties. Since (static) type
inference in such a system is generally undecidable,
dynamic path information will supply needed annota-
tions.

2. A large program may only execute a portion of its code
during common usage, and thus a dynamic tool may
not generate annotations for the entire program. This
was a problem for HSQL.

We believe that the right approach to this problem, be-
yond having more comprehensive tests, is to have the
dynamic analysis “add value” to a more traditional
static inference system. This is similar to the idea of
profile-directed compilation [5, 22]. In this case, gen-
erated code is improved by considering run-time pro-
files. In our case, candidate annotations could be gen-
erated both statically and dynamically, and checked
for soundness in the style of Houdini [13, 14]. One
challenge would be the effective handling of class pa-
rameterization.

An interesting avenue of future work is to evaluate, under
a variety of metrics, when the technique of applying dy-
namic analysis to aid sound static analysis makes sense. In
general, the fact that a property is satisfied by some set of
executions does not imply that the property holds for the en-
tire program. However, in our work the guarded-by relation
discovered by the dynamic instrumentation can frequently
be proved sound for the whole program. The interesting
question is when and why this is the case. While work has
been done to characterize the computability classes of run-
time analysis as compared to static analysis [17, 24], little
has been done to explore the two at the level of actual pro-
grams. For example, Ernst [11] has found that dynamically-
inferred properties sometimes hold statically, but does little
to explain why. We intend to consider program traces and
programs that induce them, following abstract interpreta-
tion [9].

6. REFERENCES

[1] Rahul Agarwal and Scott D. Stoller. Type Inference
for Parameterized Race-Free Java. In Proceedings of
the Fifth International Conference on Verification,
Model Checking and Abstract Interpretation, volume
2937 of Lecture Notes in Computer Science, Venice,
Italy, January 2004. Springer-Verlag.

[2] Alexander Aiken, Manuel Fahndrich, Jeffrey S. Foster,
and Zhendong Su. A Toolkit for Constructing Type-
and Constraint-Based Program Analyses. In Xavier
Leroy and Atsushi Ohori, editors, Proceedings of the
Second International Workshop on Types in
Compilation, volume 1473 of Lecture Notes in
Computer Science, pages 78-96, Kyoto, Japan, March
1998. Springer-Verlag.

[3] Jonathan Aldrich, Valentin Kostadinov, and Craig
Chambers. Alias Annotations for Program
Understanding. In Proceedings of the 17th ACM
SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications,
pages 311-330, October 2002.

[4] Glenn Ammons, Rastislav Bodik, and James R. Larus.
Mining specifications. In Proceedings of the 29th
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 4-16,
Portland, Oregon, January 2002.

[5] Glenn Ammons and James R. Larus. Improving
data-flow analysis with path profiles. In Proceedings of

(11]

(12]

(13]

(14]

(15]

(16]

the 1998 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 72-84, Montreal, Canada, June 1998.

Thomas Ball and James R. Larus. Optimally profiling
and tracing programs. In Proceedings of the 19th
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 59-70,
Albuquerque, New Mexico, January 1992.

Bytecode engineering library.
http://jakarta.apache.org/bcel/.

Chandrasekhar Boyapati and Martin Rinard. A
Parameterized Type System for Race-Free Java
Programs. In Proceedings of the 16th ACM SIGPLAN
Conference on Object-oriented Programming Systems,
Languages, and Applications, pages 56—69, November
2001.

Patrick Cousot and Radhia Cousot. Abstract
Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or
Approximation of Fixpoints. In Proceedings of the 4th
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 238—252,
1977.

Dawson Engler and Ken Ashcraft. Racerx: effective,
static detection of race conditions and deadlocks. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 237-252, Bolton Landing,
New York, October 2003.

Michael D. Ernst, Jake Cockrell, William G. Griswold,
and David Notkin. Dynamically Discovering Likely
Program Invariants to Support Program Evolution.
IEEE Transactions on Software Engineering,
27(2):99-123, February 2001.

Cormac Flanagan and Stephen N. Freund.
Type-Based Race Detection for Java. In Proceedings of
the 2000 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 219-232, Vancouver B.C., Canada, June 2000.
Cormac Flanagan and Stephen N. Freund. Detecting
race conditions in large programs. In Proceedings of
the ACM SIGPLAN/SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages
90-96, Snowbird, Utah, June 2001.

Cormac Flanagan and K. Rustan M. Leino. Houdini,
an Annotation Assitant for ESC/Java. In J. N.
Oliverira and Pamela Zave, editors, FME 2001:
Formal Methods for Increasing Software Productivity,
International Symposium of Formal Methods, number
2021 in Lecture Notes in Computer Science, pages
500-517, Berlin, Germany, March 2001.
Springer-Verlag.

Cormac Flanagan, K. Rustan M. Leino, Mark
Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended Static Checking for Java. In
Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and
Implementation, pages 234-245, Berlin, Germany,
June 2002.

Dan Grossman. Type-Safe Multithreading in Cyclone.
In Proceedings of the 2003 ACM SIGPLAN
International Workshop on Types in Language Design
and Implementation, pages 13-25, New Orleans,

[21]

[22]

[23]

[24]

[25]

Louisiana, USA, January 2003.

Kevin W. Hamlen, Greg Morrisett, and Fred B.
Schneider. Computability classes for enforcement
mechanisms. Technical Report 2003-1908, Cornell
Unviversity Department of Computer Science, 2003.
David Hovemeyer and William Pugh. Finding Bugs Is
Easy. http://www.cs.umd.edu/ pugh/java/bugs/
docs/findbugsPaper.pdf, 2003.

David Mosberger and Tai Jin. httperf: A tool for
measuring web server performance. In First Workshop
on Internet Server Performance, pages 59—67. ACM,
June 1998.

Jeremy W. Nimmer and Michael D. Ernst. Static
verification of dynamically detected program
invariants: Integrating Daikon and ESC/Java. In
Proceedings of the First Workshop on Runtime
Vertfication (RV ’01), July 2001.

Jeremy W. Nimmer and Michael D. Ernst. Invariant
Inference for Static Checking: An Empirical
Evaluation. In Tenth Symposium on the Foundations
of Software Engineering, pages 11-20, Charleston,
South Carolina, USA, November 2002.

Karl Pettis and Robert C. Hansen. Profile guided code
positioning. In Proceedings of the 1990 ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 16—27, White
Plains, New York, June 1990.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A
Dynamic Data Race Detector for Multi-Threaded
Programs. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, pages 27-37, St.
Malo, France, October 1997.

Fred B. Schneider. Enforceable security policies. ACM
Transactions on Information and Systems Security,
3(1):30-50, February 2000.

Youfeng Wu and James R. Larus. Static branch
frequency and program profile analysis. In Proceedings
of the 27th International Symposium on
Microarchitecture, pages 1-11, San Jose, CA, 1994.

25

Rigorous Concurrency Analysis of Multithreaded Programs

. . *
Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom
School of Computing, University of Utah

{yyang | ganesh | gary}@cs.utah.edu

ABSTRACT

This paper explores the practicality of conducting program
analysis for multithreaded software using constraint solving.
By precisely defining the underlying memory consistency
rules in addition to the intra-thread program semantics, our
approach offers a unique advantage for program verification
— it provides accurate and ezhaustive coverage of all thread
interleavings for any given memory model. We demonstrate
how this can be achieved by formalizing sequential consis-
tency for a source language that supports control branches
and a monitor-style mutual exclusion mechanism. We then
discuss how to formulate programmer expectations as con-
straints and propose three concrete applications of this ap-
proach: execution validation, race detection, and atomicity
analysis. Finally, we describe the implementation of a for-
mal analysis tool using constraint logic programming, with
promising initial results for reasoning about small but non-
trivial concurrent programs.

Categoriesand Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages; D.1.3 [Programming
Techniques]: Concurrent Programming

General Terms
Verification, Testing, Reliability

Keywords

Multithreaded programming, constraint solving, data races,
race conditions, atomicity, memory consistency models, static
checking

*This work was supported in part by Research Grant
No. CCR-0081406 (ITR Program) of NSF and SRC Task
1031.001.

26

1. INTRODUCTION

Unlike a sequential program, which simply requires that
each read observes the latest write on the same variable
according to program order, a multithreaded program has
to rely on the thread semantics (also known as the mem-
ory model) to define its legal outcome in a shared memory
environment. The most commonly known memory model
is sequential consistency (SC) [1]. As a natural extension
of the sequential model, sequential consistency requires that
(i) operations of all threads can exhibit a total order, (ii) op-
erations of each individual thread appear in this total order
following program order, and (iii) a read observes the lat-
est write on the same variable according to this total order.
Many weaker shared memory systems (see [2] for a survey)
have also been developed to enhance performance.

Java is the first widely deployed programming language
that provides built-in threading support at the language
level. Unfortunately, developing a rigorous and intuitive
Java Memory Model (JMM) has turned out to be very diffi-
cult. The existing JMM is flawed [3] due to the lack of rigor.
It is currently under an official revision process and a new
JMM draft [4] is proposed for community review.

Although multithreading provides a powerful program-
ming paradigm for developing well structured and high per-
formance software, it is also notoriously hard to get right.
Programmers are torn on the horns of a dilemma regarding
the use of synchronization: too much may impact perfor-
mance and risk deadlock, too little may lead to race con-
ditions and application inconsistency. Therefore, a formal
analysis about thread behaviors is often needed to make a
program more reliable. However, this can become a daunt-
ing task with a traditional pencil-and-paper approach.

For example, one common analysis is race detection. Con-
sider program 1 in Figure 1 (taken from [4]), where each
thread issues a read and a conditional write. Does this pro-
gram contain data races? At the first glance, it may appear
that the answer is “yes” since it seems to fit the conventional
intuition about a race condition — two operations from dif-

Thread 1 | Thread 2 Thread 1 | Thread 2

rl = x; r2 =1y; rl =x; r2 =y;

if(r1 > 0) | if(r2 > 0) if(r1 > 0) | if(r2 >=0)
y=1 z =1 y=1 z=1

(a) Program 1 (b) Program 2

Figure 1: Initially, x =y
race-free?

= 0. Are these programs

Thread 1 (Deposit) | Thread 2 (Withdraw)
Lock 11; Lock 11;
rl = balance; r3 = balance;
Unlock 11; Unlock [1;
r2=rl+1; rd=r3 —1;
Lock 11; Lock 11;
balance = r2; balance = r4;
Unlock 11; Unlock 11;
Figure 2: The transactions are not atomic even

though the program is race-free.

ferent threads (e.g., r1 = x in thread 1 and z = 1 in thread
2) attempt to access the same variable without explicit syn-
chronization, and at least one of them is a write. However, a
more careful analysis reveals that the control flow of the pro-
gram, which must be consistent with the read values allowed
by the memory model, needs to be considered to determine
whether certain operations will ever happen. Therefore, be-
fore answering the question, one must clarify what memory
model is assumed. With sequentially consistent executions,
for instance, the branch conditions in program 1 will never
be satisfied. Consequently, the writes can never be executed
and the code is race-free. Now consider program 2 in Fig-
ure 1, where the only difference is that the branch condition
in Thread 2 is changed to 2 >= 0. Albeit subtle, this
change would result in data races.

Another useful analysis is execution validation, which is
for verifying whether a certain outcome is permitted. This
can help a programmer understand the memory ordering
rules and aid them in code selection. Similar to a race anal-
ysis, data/control flow must be tracked for execution val-
idation. For multithreaded programs, data/control flow is
interwoven with shared memory consistency requirements.
This makes it extremely hard and error-prone to hand-prove
thread behaviors, even for small programs.

The atomicity requirement is also frequently needed to
ensure that certain operations appear to be executed atomi-
cally. As pointed out in previous publications (e.g., [5]), the
absence of race conditions does not guarantee the absence of
atomicity violations. For example, consider the program in
Figure 2. Thread 1 and 2 respectively implement the deposit
and withdraw transactions for a bank account. This pro-
gram is race-free because all accesses to the global variable
balance are protected by the same lock. If these two threads
are issued concurrently when balance is initially 1, balance
should remain the same after the program completes if im-
plemented properly. But due to the use of local variables,
one thread can interleave with another while in a “tran-
sient” state. Consequently, the final balance can be 0, 1,
or 2 depending on the scheduling, which is clearly not what
has been intended. Hence, it would be highly desirable to
have a systematic approach to specifying and verifying such
programmer expectations.

From these examples, several conclusions can be drawn.

e The precise thread semantics, in addition to the intra-
thread program semantics, must be taken into account
to enable a rigorous analysis of multithreaded software,
because a property that is satisfied under one memory

27

model can be easily broken under another.

e Program properties such as race conditions and atom-
icity requirements need to be formalized because in-
formal intuitions often lead to inaccurate results.

e An automatic verification tool with exhaustive cover-
age is extremely valuable for general software devel-
opment purposes because thread behaviors are often
confusing.

Based on these observations, we develop a formal frame-
work for reasoning about multithreaded software. Our key
insight is that by capturing thread semantics and correctness
properties as constraints, we can reduce a verification prob-
lem to a constraint satisfaction problem or an equivalent
boolean satisfiability problem, thus allowing us to employ
an efficient constraint/SAT solver to automate the analysis.
Using a verification tool harnessed with these techniques, we
can configure the underlying memory model, select a pro-
gram property of interest, take a test program as input, and
verify the result automatically under all executions. Exist-
ing program analyses rely on simplifying assumptions about
the underlying execution platform and thereby introduce un-
soundness. They tend to only concentrate on efficiency or
scalability. While these are highly worthy goals, there is
also a clear need for supporting exhaustive analysis. Our
approach fills in this gap by providing a mechanism that
makes the thread semantics explicit.

This paper offers the following contributions. (i) We de-
velop a formal executable specification of sequential consis-
tency for a non-trivial source language that supports the
use of local variables, computations, control branches®, and
a monitor-like mechanism for mutual exclusion. One key
result of this paper is to show that it is feasible and benefi-
cial to precisely capture both program semantics (including
local data dependence and local control dependence) and
memory model semantics in the same setting. As far as
we know, no one has previously provided such a formal exe-
cutable specification. (ii) We propose a method to formulate
program properties as constraints and automatically verify
them using constraint solving. In particular, we formalize
the conditions of three critical safety properties: execution
legality, race conditions, and atomicity requirements. (iii)
We build a tool using constraint logic programming (CLP)
and report the experiences gained during the implementa-
tion.

The rest of the paper proceeds as follows. In Section 2,
we provide an overview of our approach. Section 3 describes
the source language used as the basis of our presentation. In
Section 4, we apply our approach for execution validation.
Race conditions and atomicity requirements are formalized
in Section 5 and 6, respectively. We discuss the implemen-
tation of our prototype tool in Section 7. Related work is
reviewed in Section 8. We conclude and explore future work
in Section 9. The detailed formal specification is presented
in the Appendix.

2. OVERVIEW

Our approach is based on a memory model specification
framework called Nemos (Non-operational yet Executable

!Currently our formal executable specification does not di-
rectly support loops.

Test Program

Program Properties

Constraint Solver

or
SAT Solver

Program Semantics +
Memory Model Semantics

Figure 3: The processing flow of our approach.

Memory Ordering Specifications) [6, 7]. Nemos defines a
memory model in a declarative style using a collection of or-
dering rules. The processing flow of our verification method-
ology is shown in Figure 3, which comprises the following
steps: (i) capturing the semantics of the source language,
including the thread semantics, as constraints, (ii) formaliz-
ing program properties as additional constraints, (iii) apply-
ing these constraints to a given test program and reducing
the verification problem to a constraint satisfaction problem,
and (iv) employing a suitable tool to solve the constraint
problem automatically.

2.1 Specifying the Constraints

We use predicate logic to specify the ordering constraints
imposed on a relation order. To make our specifications
compositional and executable, our notation differs from pre-
vious formalisms in two ways. First, we employ a modest
extension of predicate logic to higher order logic, i.e. order
can be used as a parameter in a constraint definition so that
new refinements to the ordering requirement can be conve-
niently added. This allows us to construct a complex model
using simpler components. Second, our specifications are
fully explicit about all ordering properties, including previ-
ously implicit requirements such as totality, transitivity, and
cycle-freedom. Without explicating such “hidden” require-
ments, a specification is not complete for execution.

2.2 Solving the Constraints

After the language semantics and program properties are
specified as constraints, they can be applied to a finite exe-
cution trace. This process converts the system requirements
from higher order logic to propositional logic.

The Algorithm: Given a test program P, we first derive its
execution ops (defined in Section 3.1) from the program text
in a preprocessing phase. The initial execution is fully sym-
bolic, that is, ops may contain free variables, e.g., for data
values and ordering relations. Suppose ops has n operations,
there are n? ordering pairs among these operations. We con-
struct a n x n adjacency matrix M, where the element M;;
indicates whether operations 7 and j should be ordered. We
then go through each requirement in the specification and
impose the corresponding propositional constraints with re-
spect to the elements of M. The goal is to find a binding of
the free variables in ops such that it satisfies the conjunc-
tion of all requirements or to conclude that no such binding
exists. This is automated using a constraint solver.

3. THE SOURCE LANGUAGE

This section develops the formal semantics of sequential

28

consistency for a source language that supports many com-
mon programming language constructs. The choice of using
sequential consistency as the basis of our formal develop-
ment is motivated by two factors. (i) SC is often the implic-
itly assumed model during software development, i.e., many
algorithms and compilation techniques are developed under
the assumption of SC. (ii) Many weak memory models, in-
cluding the new JMM draft, define pivotal properties such
as race-freedom using SC executions. Providing such an
executable definition of race conditions will provide a solid
foundation upon which a full-featured Java race-detector can
be built.

Although this paper formalizes only SC, our framework is
generic and allows an arbitrary memory model to be plugged-
in for a formal comparative analysis. In our previous work,
we have already applied Nemos to build a large collection
of memory model specifications, including the Intel Itanium
Memory Model [7] and a variety of classical memory models
[6], such as sequential consistency, coherence, PRAM, causal
consistency, and processor consistency.

Our previous specification of sequential consistency in [6]
only deals with normal read and write operations. While
this is sufficient for most processor level memory systems,
it is not enough for describing language level thread activi-
ties. In order to handle more realistic programs, this paper
extends the previous model by supporting a language that
allows the use of local variables, computation operations,
control branches, and synchronization operations.

3.1 Terminology

Variables: Variables are categorized as global variables,
local variables, control variables, and synchronization vari-
ables. Global and synchronization variables are visible to all
threads. Local and control variables are thread local. Con-
trol variables do not exist in the original source program —
they are introduced by our system as auxiliary variables for
control operations. Synchronization variables correspond to
the locks employed for mutual exclusion. In our examples,
we follow a convention that uses x, y for global variables, r1,
r2 for local variables, cl, ¢2 for control variables, 1, [2 for
synchronization variables, and 0, 1 for primitive data values.

Instruction: An instruction corresponds to a program state-
ment from the program text. The source language has a
syntax similar to Java, with Lock and Unlock inserted cor-
responding to the Java keyword synchronized. It supports
the following instruction types:

Read: eg,rl=x

Write: eg,rz=1orz=rl
Computation: eg.,rl=r2+1
Control: e.g., if(rl > 0)
Lock: e.g., Lock 11

Unlock: e.g., Unlock 11

Execution: An erecution consists of a set of symbolic op-
eration instances generated by program instructions. We
assume that the expression involved in a computation or
control operation only uses local variables. If the original
instruction performs a computation on global variables, it
will be divided into read operations followed by computa-
tion operations.

Operation Tuple: An operation i is represented by a tuple:
i = (t, pc, op, var, data, local, local Data, cmpExpr, ctr Expr,

lock, matchID,id), which we decompose using a number of
selector functions (shown in boldface):

ti=t: thread ID
pPci=pc: program counter
opi=op: operation type
var i = var : global variable
data i = data : data value

local variable

data value for local variable
computation expression
path predicate

local ¢ = local :
localData ¢ = localData :
cmpExpr i = cmpExpr :
ctrExpr ¢ = ctrExpr :

lock i = lock : lock
matchlD ¢ = matchID : ID of the matching lock
idi=1id: global ID of the operation

For every global variable z, there is a default write opera-
tion for x, with the default value of and a special thread ID
tinit. We assume Lock and Unlock operations are properly
nested. Each trailing Unlock stores the id of the matching
Lock in its matchID field.

3.2 Semantics
3.2.1 Control Flow

It is a major challenge to specify control flow in the con-
text of nondeterministic thread interleavings. We solve this
problem by (i) transforming control related operations to
auxiliary reads and writes using control variables and (ii)
imposing a set of consistency requirements on the “reads”
and “writes” of control variables similar to that of normal
reads and writes. The detailed steps are as follows:

e For each branch instruction %, say if(p), add a unique
auxiliary control variable ¢, and transform instruction
i to an operation i’ with the format of ¢ = p. Operation
i’ is said to be a control operation (op i’ = Control),
and can be regarded as an assignment to the control
variable c.

e Every operation ¢ has a ctrExpr field that stores its
path predicate, which is a boolean expression on a set of
control variables dictating the condition for ¢ to be exe-
cuted. An operation ¢ can be regarded as a usage of the
involved control variables in the path predicate. With-
out loops, the path predicate for every operation can
be determined during the preprocessing phase. This
can be achieved based on a thread local analysis since
control variables are thread local.

e An operation i is feasible if its ctr Expr field evaluates
to True. We define a predicate fb to check the feasi-
bility of an operation.

e In the memory ordering rules, feasibility of the in-
volved operations is checked to make sure the consis-
tency of control flow is satisfied.

By converting control blocks to assignments and usages of
control variables, we can specify consistency rules for control
flow in a fashion similar to data flow.

29

3.2.2 Loops

Loops are not directly supported in this specification. For
the purpose of defining a memory model alone, nonethe-
less, our mechanism for handling control operations is suffi-
cient for loops. This is because the task of a memory model
specification can be regarded as answering the question of
whether a given execution is allowed by the memory model.
For any concrete terminated execution, loops have already
been resolved to a finite number of iterations.

However, to enable a fully automatic and exhaustive pro-
gram analysis involving loops, another level of constraints
need to be developed so that the path predicate of an oper-
ation can conditionally grow. Another technique, as used by
tools such as Extended Static Checker for Java (ESC/Java)
[8], is to rely on the user to supply loop invariants — loops
without invariants are handled in a manner that is unsound
but still useful. This approach can be adopted by our system
as well. As a future work, we plan to investigate effective
approaches for handling loops.

3.2.3 Formal Specification

The semantics of the source language is defined as a col-
lection of constraints. The detailed specification is presented
in Appendix A. This section explains each of the rules.

As shown below, predicate legalSC is the overall con-
straint that defines the requirement of sequential consistency
on an execution ops in which the operations follow an or-
dering relation order.

legalSC ops order =
requireProgramOrder ops order A
requireReadValue ops order A
requireComputation ops order A
requireMutualExclusion ops order A
requireWeakTotalOrder ops order A
requireTransitiveOrder ops order A
requireAsymmetricOrder ops order

Program Order Rule (Appendix A.1):

Constraint requireProgramOrder specifies that operations
should respect program order, which is formalized by predi-
cate orderedByProgram. In addition, the default writes are
ordered before other operations.

Read Value Rules (Appendix A.2):

Constraint requireReadValue enforces the consistency of
data flow across reads and writes. Informally, it requires
that for each read k: (i) there must exist a suitable write ¢
providing the data and (ii) there does not exist an overwrit-
ing write j between ¢ and k. The assignments and usages of
local variables (local data dependence) and control variables
(local control dependence) follow the similar guideline to en-
sure consistent data transfer. Therefore, requireReadValue
is decomposed into three subrules for global reads, local
reads, and control reads, respectively. Because we apply
unique control variables, controlReadValue does not need
to check the second case listed above.

Computation Rule (Appendix A.3):

Constraint requireComputation enforces the program se-
mantics. It is not directly related to the memory ordering,
but is needed for analyzing realistic code. It requires that for
every operation involving computations (i.e., when the op-

eration type is Computation or Control), the resultant data
must be obtained by properly evaluating the expression in
the operation. For brevity, the Appendix omits some details
of the standard program semantics that are usually well un-
derstood. For example, we use a predicate eval to indicate
that the standard process should be followed to evaluation
an expression. Similarly, getLocals and getCtrs are used
to parse the cmpExpr and ctr Expr fields to obtain a set
of (variable, data) entries involved in the expressions (these
entries represent the local/control variables that the oper-
ation depends on and their associated data values), which
can be subsequently processed by getVar and getData.

Mutual Exclusion Rule (Appendix A.4):

Constraint requireMutualExclusion enforces mutual exclu-
sion for operations enclosed by matched Lock and Unlock
operations.

General Ordering Rules (Appendix A.5):
These constraints require order to be transitive, total, and
asymmetric (circuit-free).

4. EXECUTION VALIDATION

A direct application of the formal language specification
is for execution validation. Studying thread behaviors with
small code fragments (generally known as litmus tests) is
very helpful for understanding the implications of a thread-
ing model. In fact, many memory model proposals rely on
a collection of litmus tests to illustrate critical properties.
In [9, 10], we have also demonstrated the effectiveness of
abstracting a common programming pattern (such as the
Double-Checked Locking algorithm or Peterson’s algorithm)
as a litmus test to support verification.

While defining the legality of thread behaviors is the com-
mon goal for all memory model specifications, the ability
to automatically validate an execution has been lacking in
previous declarative specification methods. Our system sup-
ports such an analysis by allowing a user to add annotations
about the read values, and verifying those assertions auto-
matically via constraint solving.

Constraint validateExecution verifies whether a given
execution ops is legal under the formal model.

validateExecution ops

= (3 order. legalSC ops order)

Concrete examples will be discussed in Section 7 to demon-
strate how to apply such a formal specification to enable
computer aided analysis.

5. RACE DETECTION

Race conditions are usually inadvertently introduced and
may lead to unexpected behaviors that are hard to debug.
Therefore, catching these potential defects is highly useful
for developing reliable software. Furthermore, many relaxed
memory systems guarantee that race-free programs behave
in the same way as sequentially consistent programs, which
allows programmers to rely on their intuitions about SC dur-
ing software development. This also makes race-detection
even more important in practice.

Our definition of a data race is according to [11], which has
also been adopted by the new JMM draft [4]. In these pro-
posals, a happens-before order (based on Lamport’s happened-

30

before order [12] for message passing systems) is used for for-
malizing concurrent memory accesses. Further, data-race-
free programs (also referred to as correctly synchronized pro-
grams) are defined as being free of conflicting and concurrent
accesses under all sequentially consistent executions. The
reason for using SC executions to define data races is to
make it easier for a programmer to determine whether a
program is correctly synchronized.

We define constraint detectDataRace to catch any poten-
tial data races. This constraint attempts to find a total order
scOrder and a happens-before order hbOrder such that there
exists a pair of conflicting operations which are not ordered
by hbOrder. This formalizes the notion of data races under
sequentially consistent executions.

detectDataRace ops = 3 scOrder, hbOrder.
legalSC ops scOrder A
requireHbOrder ops hbOrder scOrder N
mapConstraints ops hbOrder scOrder A
existDataRace ops hbOrder

Happens-before order is defined in requireHbOrder. Intu-
itively, it states that two operations are ordered by happens-
before order if (i) they are program ordered, (ii) they are or-
dered by synchronization operations, or (iii) they are tran-
sitively ordered by a third operation.
requireHbOrder ops hbOrder scOrder =
requireProgramOrder ops hbOrder N
requireSyncOrder ops hbOrder scOrder N
requireTransitiveOrder ops hbOrder

Since sequential consistency requires a total order among
all operations, the happens-before edges induced by syn-
chronization operations must follow this total order. This is
captured by requireSyncOrder. Similarly, mapConstraints
is used to make sure scOrder is consistent with hbOrder.

requireSyncOrder ops hbOrder scOrder =V i j € ops.
(fbi A fb j A isSync i A isSync j A scOrder i j)
= hbOrder i j

mapConstraints ops hbOrder scOrder =V i j € ops.
(fbi A fb j A hbOrder i j) = scOrder i j

With a precise definition of happens-before order, we can
formalize a race condition in constraint existDataRace. A
race is caused by two feasible operation that are (i) conflict-
ing, i.e., they access the same variable from different threads
(t i £t j) and at least one of them is a write, and (ii) con-
current, i.e., they are not ordered by happens-before order.

existDataRace ops hbOrder =31i,5 € ops.
fbinfbj Ati#tj A vari=var j A
(op i = Write V op j = Write) A
—(hbOrder i j) A —(hbOrder j i)

To support race analysis for the new JMM proposal, this
race definition needs to be extended, e.g., by adding seman-
tics for volatile variable operations.

6. ATOMICITY VERIFICATION

Atomicity ensures certain atomic transactions. If atomic-

ity can be verified, a compiler may ignore the fine-grained in-
terleavings and apply standard sequential compilation tech-
niques when treating an atomic block. However, race-freedom
is neither mecessary nor sufficient to ensure atomicity. As
shown by the example in Figure 2, a monitor-style mutual
exclusion mechanism, if used improperly, cannot guarantee
atomicity even if the code is race-free. Therefore, a different
mechanism is needed to specify and verify atomicity.

For this purpose, we allow a programmer to annotate an
atomic block by enclosing it with keywords AtomicEnter
and AtomicExit. To simplify some implementation details,
we assume that the annotations are properly inserted. For
the operation tuple, we add three more fields: abEnter,
abExit, and matchAbID.

if 4 is the start of

an atomic block;

if ¢ is the end of an
atomic block;

ID of the matching start
of the atomic block.

abEnter i = abEnter :
abExit i = abExit :

matchAbID i = matchAbID :

During the preprocessing phase, we set up the operation ¢
that immediately follows an AtomicEnter with abEnter i =
True. Similarly, we set up the operation j that immediately
precedes the matching AtomicExit with abExit j = True.
We also record the id of ¢ into the matchAbID field of j
(matchAbID j = id ¢). Given an execution ops trans-
formed from an annotated program, we can use constraint
verifyAtomicity to catch atomicity violations.

verify Atomicity ops = 3 order.
legalSC ops order A
exist Atomicity Violation ops order
exist Atomicity Violation ops order =
d14,4,k € ops.
(fbi A fbjA fbkA
abEnter ¢ A abExit j A
id i = matchAtID j A idi#id j A
isViolation k£ i A
—(order k i) A —(order j k))

isViolation k i

(t k#£t1)

The definition of existAtomicityViolation is generic, in
that isViolation can be fine-tuned to capture other desired
semantics. For illustration purposes, we only provide a very
strong requirement here. It states that no operation from
another thread can be interleaved between the atomic block.
In practice, it is benign to interleave certain operations as
long as the effect cannot be observed. For example, it might
be desirable to define a “variable window” (a set of variables
manipulated within an atomic block) and only detect an
atomicity violation when the intruding operation “overlaps”
the variable window.

7. IMPLEMENTATION

Constraint-based analyses can be quickly prototyped us-
ing a constraint logic programming language such as FD-
Prolog®. We have built a tool named DefectFinder, written
in SICStus Prolog [13], to test the proposed techniques.

2FD-Prolog refers to Prolog with a finite domain (FD) con-

31

7.1 Constraint Solver

Two mechanisms from FD-Prolog can be applied for solv-
ing the constraints in our specification. One applies back-
tracking search for all constraints expressed by logical vari-
ables, and the other uses non-backtracking constraint solv-
ing techniques such as arc consistency [14] for finite domain
variables, which is potentially more efficient and certainly
more complete (especially under the presence of negation)
than with logical variables. This works by adding con-
straints in a monotonically increasing manner to a constraint
store, with the built-in constraint propagation rules of FD-
Prolog helping refine the variable ranges when constraints
are asserted to the constraint store. In a sense, the built-in
constraint solver from Prolog provides an effective means for
bounded software model checking by explicitly exploring all
program executions, but symbolically reasoning about the
constraints imposed on free variables.

7.2 Constraint Generation

Translating the constraints specified in the Appendix to
Prolog rules is straightforward. Omne caveat, however, is
that most Prolog systems do not directly support quanti-
fiers. While existential quantification can be realized via
Prolog’s backtracking mechanism, we need to implement
universal quantification by enumerating the related finite
domain. For instance, constraint requireWeakTotalOrder
is originally specified as follows:

requireWeakTotalOrder ops order =V i,j € ops.
(fbi Afbj Aidi#id j) = (orderij V order j 1)

In the Prolog code, predicate forEachElem is recursively
defined to call the corresponding elemProg for every element
in the adjacency matrix Order (variable names start with a
capital letter in Prolog).

requireWeakTotalOrder (Ops,Order,FbList) : -
forEachElem(Ops,Order,FbList,doWeakTotalOrder) .

elemProg(doWeakTotalOrder,Ops,Order,FbList,I,J) :-
const(feasible,Feasible),
length(0Ops,N),
matrix_elem(Order,N,I,J,0ij),
matrix_elem(Order,N,J,I,0ji),
nth(I,FbList,Fi),
nth(J,FbList,Fj),
(Fi #= Feasible #/\ Fj #= Feasible #/\ I #\= J)
#=> (0ij #\/ 0ji).

One technique shown by the above example is worth not-
ing. That is, the adjacency matrix Order and the feasibility
list FbList are passed in as finite domain variables. The do-
main of the elements in these lists (which is boolean in this
case) is previously set up in the top level predicate. Provid-
ing such domain information significantly reduces the solv-
ing time, hence is critical for the performance of the tool.

The search order among the constraints may also impact
performance. In general, it is advantageous to let the solver
satisfy the most restrictive goal first. For example, read
value rules should precede the general ordering rules.

straint solver. For example, SICStus Prolog and GNU Pro-
log have this feature.

Tinit Thread 1 Thread 2

Dwr(x,0); (3)rd(x,rl1,1); (6)rd(y,r2,0);

)wr(y,0); (4)ctr(el,[r1>0]); (7T)ctr(c2, [r2>=0]);
Bwr(y,1,[c1]); (B)wr(x,1,[c2]);

Figure 4: The execution derived from program 2 in
Figure 1 with r1 =1 and 2 = 0.

[eNoNoNeNoRalb] FNN
[eNoNoNoNoRaNold R
== =000 W
e O O
RO R,y
coocooo~ o
cCorRrOoOO O KHY
O, OOOFKH

0 3 D Crds Lo do

Figure 5: The adjacency matrix for the execution
shown in Figure 4 under sequential consistency.

7.3 Concurrency Analysis

DefectFinder is developed in a modular fashion and is
highly configurable. It supports all three applications de-
scribed in this paper. It also enables interactive and incre-
mental analyses, meaning it allows users to selectively enable
or disable certain constraints to help them understand the
underlying model piece by piece.

To illustrate how the tool works, recall program 2 in Fig-
ure 1. Consider the problem of checking whether r1 = 1
and 72 = 0 is allowed by sequential consistency. Figure 4
displays the corresponding execution derived from the pro-
gram text (it only shows the operation fields relevant to this
example). When constraint validateExecution is imposed
on this execution, DefectFinder immediately finds a legal
order that satisfies the constraint and outputs its adjacency
matrix, as shown in Figure 5. A matrix element M;; can
have a value of 0, 1, or X, where 0 indicates i is not ordered
before j, 1 indicates i must precede j, and X means the
ordering relation between ¢ and j has not been instantiated
based on the accumulated constraints. In general, there usu-
ally exist many X entries where alternative interleavings are
allowed. If desired, a Prolog predicate labeling can be called
to instantiate all variables. Our tool also outputs a possible
interleaving 1 2 6 7 8 8 4 5 which is automatically derived
from this matrix.

If the execution with r1 = 0 and 2 = 1 is checked, the
tool would quickly determine that it is illegal since no or-
dering relation can be found to satisfy all constraints. The
user can also ask “what if” queries by selectively comment-
ing out some ordering rules to identify the root cause of a
certain program behavior.

Applying DefectFinder for a different application simply
involves selecting the corresponding goal. For example, if
the programs in Figure 1 are checked for race conditions, the
tool would report that program 1 is race-free and program
2 is not, in which case the conflicting operations and an
interleaving that leads to the race conditions are displayed.

Similarly, when the program in Figure 2 is verified for race
conditions, our utility would report that it is race-free. How-
ever, an atomicity violation would be detected if the trans-

action is annotated by an atomic block. Having detected
this defect, the user can subsequently modify the code and
do the test again. For instance, if a transaction is protected
by a single Lock/Unlock pair and both transactions use the
same lock, the bug would be removed.

7.4 Performance

Precise semantic analysis such as race detection is NP-
hard in general [15]. Nonetheless, constraint-based methods
have become very successful in practice, thanks to the effi-
cient solving techniques developed in recent years.

Our tool has been applied to analyze a large collection of
litmus tests — each of them is designed to reveal a certain
memory model property or to simulate a common program-
ming pattern. Figure 6 summarizes the performance results
of the examples discussed in this paper. These analyses are
performed using a Pentium 366 MHz PC with 128 MB of
RAM running Windows 2000. SICStus Prolog is run un-
der compiled mode. Our utility is available for download at
http://wuw.cs.utah.edu/ yyang/DefectFinder.zip.

| Test Program | Property | Result | Time (sec) |
Program 1 in | r1=1 and r2=07 illegal 6.790
Figure 1 Race Conditions | no races 6.810
Program 2 in | r1=1 and r2=07 legal 0.401
Figure 1 Race Conditions | has races 0.811
Program in Race Conditions | no races 18.940
Figure 2 Atomicity violated 2.955

Figure 6: Performance statistics.

In terms of scalability, there are two aspects involved. One
is the complexity of the shared memory system that can be
modelled. The other is the size of programs that can be an-
alyzed. For the former aspect, our system scales well with
its compositional specification style. As demonstrated in
[7], it is capable of formalizing memory ordering rules for
cutting-edge commercial processors. As for the latter as-
pect, our CLP prototype tool currently only handles small
litmus tests. However, there is still a lot of room for im-
provement, which offers an important but orthogonal task
for future work. For instance, one can add a “constraint
configuration” component that automatically filters out or
reorders certain rules according to the input program, e.g.,
rules regarding control flow can be excluded if the program
does not involve branch statements. Other solving tech-
niques may also help make our approach more effective. We
have shown in [7] that a slight variant of the Prolog code
can let us benefit from a propositional SAT solver. In our
recent work [16], we are developing efficient SAT encoding
methods for analyzing larger programs. We are now in a
position to handle nearly 500 memory operations.

8. RELATED WORK

Constraint solving was historically applied in AI planning
problems. In recent years, it has started to show a lot of
potential for program analysis as well. For example, con-
straints are used in [17] to analyze programs written in a
factory control language called Relay Ladder Logic. A con-
straint system is developed in [18] for inferring static types
for Java bytecode. The work in [19] performs points-to anal-
ysis for Java by employing annotated inclusion constraints.

Flanagan [20] proposed to use CLP for bounded software
model checking. To the best of our knowledge, our work
is the first to apply the constraint-based approach for cap-
turing language-level memory models and reasoning about
correctness properties in multithreaded programs.

Extensive research has been done in model checking Java
programs, e.g., [21, 22, 23, 24]. These tools, however, do not
specifically address memory model issues. Therefore, they
cannot precisely analyze fine-grained thread interleavings.
We can imagine our method being incorporated into these
tools to make their analyses more accurate.

There is a large body of work on race detection, which
can be classified as static or dynamic analysis. The lat-
ter can be further categorized as on-the-fly or post-mortem,
depending on how the execution information is collected.
Netzer and Miller [25] proposed a detection algorithm us-
ing the post-mortem method. Adve and Hill proposed the
data-race-free model [26] and developed a formal definition
of data races under weak memory models [11]. Lamport’s
happened-before relation has been applied in dynamic anal-
ysis tools, e.g., [27, 15, 28]. Several on-the-fly methods,
e.g., [29, 30, 31], exploited information based on the un-
derlying cache coherence protocol. The drawback of these
dynamic techniques is that they can easily miss a data race,
depending on how threads are scheduled. Our approach is
based on the definition given in [11]. Our system also em-
ploys the happened-before relation, hence it is able to handle
many different synchronization styles. Unlike the dynamic
approaches, we use a static method that examines a sym-
bolic execution to achieve an exhaustive coverage.

Some race detectors, e.g., [32, 33, 34], were designed specif-
ically for the lock-based synchronization model. Tools such
as ESC/Java [8] and Warlock [35] rely on user-supplied an-
notations to statically detect data races. Type-based ap-
proaches, e.g., [36, 37, 38], have also been proposed for
object-oriented programs. While effective in practice, these
tools do not address the issue that we focus on in this paper,
which is how to rigorously reason about multithreaded pro-
grams running in a complex shared memory environment.

Flanagan and Qadeer [5] developed a type system to en-
force atomicity based on Lipton’s theory of right and left
movers [39]. Since a race analysis is required to be performed
in advance, the effectiveness of their approach depends on
the accuracy of the race detector. It will be interesting to
investigate if the requirements of movers can be captured as
constraints for type inference.

9. CONCLUSION

We have presented a novel approach that handles both
program semantics and memory model semantics in a declar-
ative constraint-based framework. With three concrete ap-
plications — execution validation, race detection, and atom-
icity verification — we have demonstrated the feasibility
and effectiveness of applying such a “memory-model-aware”
analysis tool for verifying multithreaded programs that, al-
beit small, can be extremely difficult to analyze by hand.
Our framework is particularly useful in helping people un-
derstand the underlying concurrency model and conduct
verification for common programming patterns. The capa-
bility of studying program correctness under relaxed mem-
ory models is also essential in verifying critical components
of important programs such as JVMs and garbage collectors
that run on weak memory systems.

33

To summarize, our system offers the following benefits:

e [t is rigorous. Based on formal definitions of program
properties and memory model rules, our system en-
ables a precise semantic analysis. Specifications devel-
oped in such a rigorous manner can also be sent to
a theorem proving utility, such as the HOL theorem
prover [40], for proving generic properties.

e [t is automatic. Our approach allows one to take ad-
vantage of the tremendous advances in constraint/SAT
solving techniques. The executable thread semantics
can also be treated as a “black box” whereby the users
are not necessarily required to understand all the de-
tails of the model to benefit from the tool.

e It is generic. Since our method is not limited to a
specific synchronization mechanism, it can be applied
to reason about various correctness properties for any
threading model, all using the same framework.

Future Work: We plan to investigate divide-and-conquer
style verification methods to make our system more scal-
able. Techniques developed in other tools, such as predicate
abstraction, branch refinement, and assume-guarantee, can
be integrated into our system. We also plan to explore more
efficient solving techniques. In particular, the structural in-
formation of the constraints may be applied for improving
the solving algorithms. We hope this paper can help pave
the way towards future studies in these exciting areas.

10. REFERENCES

[1] Leslie Lamport. How to make a multiprocessor
computer that correctly executes multiprocess
programs. IEEE Transactions on Computers,
28(9):690-691, 1979.

S. V. Adve and K. Gharachorloo. Shared memory

consistency models: A tutorial. IEEE Computer,

29(12):66-76, 1996.

[3] W. Pugh. The Java memory model is fatally flawed.

Concurrency: Practice and Experience, 12(1):1-11,

2000.

JSR133: Java memory model and thread specification.

http://www.cs.umd.edu/ pugh/java/memoryModel.

Cormac Flanagan and Shaz Qadeer. A type and effect

system for atomicity. In Proceedings of PLDI, 2003.

[6] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom,
and Konrad Slind. Nemos: A framework for axiomatic
and executable specifications of memory consistency
models. The 18th International Parallel and
Distributed Processing Symposium (IPDPS), to
appear.

2]

[4]

[5]

[7] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom,
and Konrad Slind. Analyzing the Intel Itanium
memory ordering rules using logic programming and
SAT. In Proceedings of the 12th Advanced Research
Working Conference on Correct Hardware Design and
Verification Methods (CHARME’03), LNCS 2860,
October 2003.

C. Flanagan, K. Leino, M. Lillibridge, C. Nelson,

J. Saxe, and R. Stata. Extended static checking for
Java, 2002.

[9]

[10]

[11]

[22]

[23]

Yue Yang, Ganesh Gopalakrishnan, and Gary
Lindstrom. Analyzing the CRF Java Memory Model.
In Proceedings of the 8th Asia-Pacific Software
Engineering Conference, 2001.

Yue Yang, Ganesh Gopalakrishnan, and Gary
Lindstrom. UMM: An operational memory model
specification framework with integrated model
checking capability. Concurrency and Computation:
Practice and Ezperience, to appear.

S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B.
Netzer. Detecting data races on weak memory
systems. In Proceedings of the 18th International
Symposium on Computer Architecture (ISCA), pages
234-243, 1991.

L. Lamport. Time, clocks and ordering of events in
distributed systems. 21(7):558-565, July 1978.
SICStus Prolog. http://www.sics.se/sicstus.

J. Jaffar and J-L. Lassez. Constraint logic
programming. In Principles Of Programming
Languages, Munich, Germany, January 1987.

Robert H. B. Netzer. Race condition detection for
debugging shared-memory parallel programs.
Technical Report CS-TR-1991-1039, 1991.

Ganesh Gopalakrishnan, Yue Yang, and
Hemanthkumar Sivaraj. QB or not QB: An efficient
execution verification tool for memory orderings. In
Proceedings of Computer Aided Verification (CAV’04).
Alexander Aiken, Manuel Fahndrich, and Zhendong
Su. Detecting races in relay ladder logic programs.
LNCS, 1384:184-200, 1998.

Etienne Gagnon, Laurie J. Hendren, and Guillaume
Marceau. Efficient inference of static types for java
bytecode. In Static Analysis Symposium, pages
199-219, 2000.

Atanas Rountev, Ana Milanova, and Barbara G.
Ryder. Points-to analysis for Java using annotated
constraints. In Proceedings of Object-Oriented
Programming Systems, Lanuages, and Applications,
pages 43-55, 2001.

Cormac Flanagan. Automatic software model checking
using CLP. In Proceedings of ESOP, 2003.

Klaus Havelund and Thomas Pressburger. Model
checking JAVA programs using JAVA PathFinder.
International Journal on Software Tools for
Technology Transfer, 2(4):366-381, 2000.

W. Visser, K. Havelund, G. Brat, and S. Park. Java
PathFinder - second generation of a Java Model
Checker. In Post-CAV Workshop on Advances in
Verification, Chicago, 2000.

James C. Corbett, Matthew B. Dwyer, John Hatcliff,
Shawn Laubach, Corina S. Pasareanu, Robby, and
Hongjun Zheng. Bandera: extracting finite-state
models from Java source code. In International
Conference on Software Engineering, 2000.

D. Park, U. Stern, and D. Dill. Java model checking.
In Proceedings of the First International Workshop on
Automated Program Analysis, Testing and
Verification, Limerick, Ireland, 2000.

R. H. Netzer and B. P. Miller. What are race
conditions? Some issues and formalizations. ACM
Letters on Programming Languages and Systems,

34

[26]

[27]

[30]

[31]

[32]

[33]

[34]

[39]

[40]

1(1):74-88, 1992.

S. V. Adve and M. D. Hill. A unified formalization of
four shared-memory models. IEEE Trans. on Parallel
and Distributed Systems, 4(6):613-624, 1993.

A. Dinning and E. Schonberg. Detecting access
anomalies in programs with critical sections. In
Proceedings of the ACM/ONR Workshop on Parallel
and Distributed Debugging, pages 85-96, 1991.

D. Perkovic and P. Keleher. Online data-race
detection via coherency guarantees. In Proceedings of
the 2nd Symposium on Operating Systems Design and
Implementation (OSDI’96), pages 47-57, 1996.

S. L. Min and J.-D. Choi. An efficient cache-based
access anomaly detection scheme. In Proceedings of
the 4th International Conference on Architectural
Support for Programming Languages and Operating
System (ASPLOS), pages 235-244, 1991.

B. Richards and J. R. Larus. Protocol-based data-race
detection. In Proceedings of the SIGMETRICS
symposium on Parallel and distributed tools, 1998.
Edmond Schonberg. On-the-fly detection of access
anomalies. In Proceedings of PLDI, pages 285-297,
1989.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A
dynamic data race detector for multithreaded
programs. ACM Transactions on Computer Systems,
15(4):391-411, 1997.

C. von Praun and T. Gross. Object-race detection. In
Proceedings of Object-Oriented Programming Systems,
Lanuages, and Applications, pages 70-82, 2001.

J. Choi, K. Lee, A. Loginov, R. O’Callahan,

V. Sarkar, and M. Sridharan. Efficient and precise
datarace detection for multithreaded object-oriented
programs. In Proceedings of PLDI, 2002.

N. Sterling. Warlock - a static data race analysis tool.
USENIX Winter Technical Conference, pages 97-106,
1993.

Cormac Flanagan and Stephen N. Freund. Type-based
race detection for Java. Proceedings of PLDI, pages
219-232, 2000.

David F. Bacon, Robert E. Strom, and Ashis
Tarafdar. Guava: a dialect of Java without data races.
In Proceedings of Object-Oriented Programming
Systems, Lanuages, and Applications, 2000.
Chandrasekhar Boyapati and Martin Rinard. A
parameterized type system for race-free Java
programs. In Proceedings of Object-Oriented
Programming, Systems, Languages, and Applications,
2001.

R. Lipton. Reduction: a method of proving properties
of parallel programs. Communications of the ACM,
18(12):717-721, 1975.

T. F. Melham M. J. C. Gordon. Introduction to HOL:
A theorem proving environment for higher order logic.
Cambridge University Press, 1993.

APPENDI X

A. SEQUENTIAL CONSISTENCY

legalSC ops order
requireProgramOrder ops order A
requireReadValue ops order A
requireComputation ops order A
requireMutualExclusion ops order A
requireWeakTotalOrder ops order A
requireTransitiveOrder ops order A
requireAsymmetricOrder ops order

A.1 Program Order Rule

requireProgramOrder ops order =V i,j € ops.
(fbi A fb j A (orderedByProgram i j V
ti=tinit Nt j 7é tznzt)) = order ¢]

A.2 Read ValueRules

requireReadValue ops order =
globalReadValue ops order A
localReadValue ops order A
controlReadValue ops order

globalReadValue ops order =V k € ops.
(fb k A isRead k) =
(Ficops.fbi A opi=Write A var i =var k A
data i = data k A —(order k i) A
(-3 j€ops.fbj A op j=Write A var j =var k A
order i j A order j k))

localReadValue ops order =V k € ops. fb k =
(V e € (getLocals k).
(33 € ops. (fbi A isAssigni A local i = getVar e A
data ¢ = getData e A orderedByProgram ¢ k) A
(=37 € ops. (fb j A isAssign j A local j = getVar e A
orderedByProgram i j A orderedByProgram j k))))

controlReadValue ops order =V k € ops.
(V e € (getCtrs k).
(3 i € ops. op i = Control A var i = getVar e A
data i = getData e A orderedByProgram i k))

A.3 Computation Rule

requireComputation ops order =V k € ops.
((fb k A op k = Computation) =
(data k = eval (cmpExpr k))) A
((fb k A op k = Control) =
(data k = eval (ctrExpr k)))

A.4 Mutual Exclusion Rule

requireMutualExclusion ops order =V i,j € ops.
(fbi A fb j A matchLock i j) =
(-3 k €ops. fb k A isSync k A
lock k =locki A tk#ti A orderi k A order k j)

A.5 General Ordering Rules

requireWeakTotalOrder ops order =V i,j € ops.
(fbi Afbj Aidi#id j) = (orderij V order j 1)

requireTransitiveOrder ops order =V i, j, k € ops.
(fbiAfbjAfbk AorderijAorderjk)= orderik

requireAsymmetricOrder ops order =V i,j € ops.
(fbi A fb j A order i j) = —(order j i)

35

A.6 Auxiliary Definitions
fb i = (eval (ctrExpr i) = True)

orderedByProgram i j=(ti=tj A pci<pcj)
isAssign ¢ = (op ¢ = Computation V op i = Read)
isSync i = (op i = Lock V op i = Unlock)

matchLock i j =
op i = Lock A op j = Unlock N matchID j=id i

Note: for brevity, the following predicates are not explicitly
defined here since they are typically well understood.

eval exp:
getLocals k:

evaluate exrp with standard program semantics;
parse k and get the set of local variables that k
depends on, with their associated data values;

getCtrs k: parse the path predicate of k and get the set
of control variables that k depends on, with
their associated data values;

getVar e: get variable from a (variable, data) entry;

getData e: get data from a (variable, data) entry.

B. EXECUTION VALIDATION

validateExecution ops = 3 order. legalSC ops order

C. RACE DETECTION

detectDataRace ops = 3 scOrder, hbOrder.
legalSC ops scOrder A
requireHbOrder ops hbOrder scOrder N
mapConstraints ops hbOrder scOrder A
existDataRace ops hbOrder

requireHbOrder ops hbOrder scOrder =
requireProgramOrder ops hbOrder A
requireSyncOrder ops hbOrder scOrder A
requireTransitiveOrder ops hbOrder

requireSyncOrder ops hbOrder scOrder =V i j € ops.
(fbi A fb j A isSync i A isSync j A scOrder i j)
= hbOrder i j

mapConstraints ops hbOrder scOrder =V i j € ops.
(fbi A fb 5 A hbOrder i j) = scOrder i j

existDataRace ops hbOrder = 34,5 € ops.
fbinfbj ANti#tj A vari=var j A
(op i = Write V op j = Write) A
—(hbOrder i j) A —(hbOrder j 7)

D. ATOMICITY VERIFICATION

verify Atomicity ops = 3 order.
legalSC ops order A
exist Atomicity Violation ops order

exist Atomicity Violation ops order =314,j,k € ops.
(fbi A fbjA fb kA
abEnter i A abExit j A
id ¢ = matchAtID j A idi#id j A
isViolation k i A
—(order k i) A —(order j k))

isViolation k i

(t k#t i)

Requirements for Programming Language Memory Models

Jeremy Manson and William Pugh
Department of Computer Science
University of Maryland, College Park

{jmanson, pugh}@cs.umd.edu

ABSTRACT

One of the goals of the designers of the Java programming
language was that multithreaded programs written in Java
would have consistent and well-defined behavior. This would
allow Java programmers to understand how their programs
might behave; it would also allow Java platform architects to
develop their platforms in a flexible and efficient way, while
still ensuring that Java programs ran on them correctly.
Unfortunately, Java’s original memory model, which de-
scribed the way in which Java threads interact through mem-
ory, was not defined in a way that allowed programmers and
architects to understand the requirements for a Java system.
As part of Java Specification Request (JSR) 133 [7], a new
memory model has been defined for Java. This paper out-
lines how the requirements for a new memory model were
established, and what those requirements are. It does not
outline the model itself; it merely provides a rationale.

1. INTRODUCTION

The work in [13, 14] showed that the original semantics for
Java’s threading specification [6, §17] had serious problems.
To address these issues, the Java programming language [6]
has recently undergone a revision; it now provides greater
flexibility for implementors and a clearer notion of what it
means to write a correct program. The new specification is
widely known as the Java memory model.

To provide a clearer semantics, the informal properties of
the memory model had to be described. This was accom-
plished through a great deal of thinking, staring at white
boards, and spirited debate. A careful balance had to be
maintained. On one hand, it was necessary for the model to
allow programmers to be able to reason carefully and cor-
rectly about their multithreaded code. On the other, it was
necessary for the model to allow compiler writers, virtual
machine designers and hardware architects to optimize code
ruthlessly, possibly interfering with the intuitive results of a
program.

At the end of this process, a consensus emerged as to

what the informal requirements for a programming language
memory model are. In this paper, we discuss these require-
ments in detail. We do not discuss how these requirements
were met. For more details on the actual model, see [7].

For a more detailed record of the process of designing this
memory model, it might be instructive for the reader to look
at the Java memory model mailing list archives [8].

2. WHY A SEMANTICS?

In the past, multithreaded languages have not defined a
full semantics for multithreaded code. Ada, for example,
simply defines unsynchronized code as “erroneous” [1]. The
reasoning behind this is that since such code is incorrect (on
some level), no guarantees should be made when it occurs.
What it means for code to be correctly synchronized should
be fully defined; after that, nothing.

This is the same strategy that some languages take with
array bounds overflow — unpredictable results may occur,
and it is the programmer’s responsibility to avoid these sce-
narios.

The problem with this strategy is one of security and
safety. In an ideal world, all programmers would write cor-
rect code all of the time. However, this does not always
happen. Programs frequently contain errors; not only does
this cause code to misbehave, but it also allows attackers
an easy way into a program. Buffer overflows, in particu-
lar, are frequently used to compromise a program’s security.
Program semantics must be carefully defined: otherwise, it
becomes harder to track down errors, and easier for attack-
ers to take advantage of those errors. If programmers don’t
know what their code is doing, programmers won’t be able
to know what their code is doing wrong.

The new Java memory model provides strong guarantees
for correctly written code, but also provides a clear and
definitive semantics for how code should behave when it is
not correctly written.

3. SIMPLE REORDERING

Many of the most important optimizations that can be
performed on a program involve reordering program state-
ments. For example, superscalar architectures frequently
reorder instructions to ensure that the execution units are
all in use as much as possible. Even optimizations as ubiq-
uitous as common subexpression elimination and redundant
read elimination can be seen as reorderings: each evaluation
of the common expression is conceptually “moved” to the
point at which it is evaluated for the first time.

36

Initially, x ==y == 10
Thread 1 ‘ Thread 2
Iir2=x; | 3:rl=y
2:y=1; |4 x=2
May return 12 == 2, rl == 1
Figure 1: Behaves Surprisingly

In a single threaded program, a compiler can (and, indeed,
must) be careful that these program transformations not in-
terfere with the possible results of the program. We refer to
this as a compiler’s maintaining of the intra-thread seman-
tics of the program — a thread in isolation has to behave as
if no code transformations occurred at all.

However, it is much more difficult to maintain a simple,
straightforward semantics while optimizing multithreaded
code. Consider Figure 1. It may appear that the result
r2 == 2, rl == 1 is impossible. Intuitively, if r2 is 2, then
instruction 4 came before instruction 1. Further, if rl is
1, then instruction 2 came before instruction 3. So, if r2
== 2 and r1 == 1, then instruction 4 came before instruc-
tion 1, which comes before instruction 2, which came before
instruction 3, which comes before instruction 4. This is a
cyclic execution, which is, on the face of it, absurd.

On the other hand, we must consider the fact that a com-
piler can reorder the instructions in each thread. If instruc-
tion 3 does not come before instruction 4, and instruction 1
does not come before instruction 2, then the result r2 ==
and r1 == 1 is perfectly reasonable.

In fact, in Java, for performance reasons, we always allow
actions that are not control or data dependent on each other
in a program to be reordered. This leads us to our first
requirement:

Reorderl Independent actions can be reordered.

In a multithreaded context, doing this may lead to counter-
intuitive results, like the one in Figure 1. However, it should
be noted that this code is improperly synchronized: there
is no ordering of the accesses by synchronization. When
synchronization is missing, weird and bizarre results are al-
lowed.

It should be noted that Reorderl guarantees that inde-
pendent actions can be reordered regardless of the order in
which they appear in the program. It does not guarantee
that two independent actions can always be reordered. For
example, a write action clearly cannot be reordered out of a
locking region. We shall see another example of how these
reorderings are limited in Section 5.4.

4. GUARANTEES FOR CORRECTLY SYN-
CHRONIZED PROGRAMS

It is very difficult for programmers to reason about the
kinds of transformations that compilers perform. One of the
goals of the Java memory model is to provide programmers
a mechanism that allows them not to have to reason about
reorderings in a program.

For example, in the code in Figure 1, the programmer
can only see the result of the reordering because the code
is improperly synchronized. Our first goal is to ensure that
this is the only reason that a programmer can see the result
of a reordering.

We say that a program obeys sequentially consistent se-
mantics (as defined in [10]) if the result of any execution

Initially, x == y ==

Thread 1 | Thread 2
rl = x; r2 =y;
if (r1 !'=0) | if (r2 != 0)
y = 42; x = 42;
Correctly synchronized, so r1 == r2 == 0 is the only legal
behavior

Figure 2: Surprising Correctly Synchronized Pro-
gram

is the same as if all of the actions in that execution took
place in some total order that reflects the order of the pro-
gram, and each read sees the last write to that variable that
occurred in that order. If a program obeys sequentially con-
sistent semantics, then no compiler or processor reorderings
will be visible.

Two accesses (reads of or writes to) the same shared field
or array element are said to be conflicting if at least one
of the accesses is a write. A data race occurs in an execu-
tion of a program if there are conflicting actions in multiple
threads in that execution that are not ordered by synchro-
nization. The program in Figure 1 has data races on both x
and y. A program is correctly synchronized if and only if all
sequentially consistent executions are free of data races.

Having defined these terms, we can talk a little more
about the guarantees we provide. One possibility would be
that we could eliminate all reorderings. On contemporary
systems, this would have too much of an impact on per-
formance. However, it is perfectly reasonable to ensure that
code reordering should only be visible between threads when
those threads are involved in data races. Our first guar-
antee for programmers, therefore, applies to data-race-free
programs:

DRF Correctly synchronized programs have sequentially
consistent semantics.

Given this requirement, programmers need only worry
about code transformations having an impact on their pro-
grams’ results if those program contain data races.

This requirement leads to some interesting corner cases.
For example, the code shown in Figure 2 (first described
in [2]) is correctly synchronized. This may seem surprising,
since it doesn’t perform any synchronization actions. Re-
member, however, that a program is correctly synchronized
if, when it is executed in a sequentially consistent manner,
there are no data races. If this code is executed in a se-
quentially consistent way, each action will occur in program
order, and neither of the writes will occur. Since no writes
occur, there can be no data races: the program is correctly
synchronized. A program transformation (such as an ag-
gressive write speculation) that permitted this result would
be disallowed.

5. SYNCHRONIZATION

We haven’t really discussed how code can use explicit syn-
chronization (in whatever form we give it) to make sure their
code is correctly synchronized. The typical way of doing this
is by using locking. Another way is to use volatile variables.

The properties of volatile variables arose from the need
to provide a way to communicate between threads without
the overhead of ensuring mutual exclusion. A very simple

37

Initially, x == 0, ready == false. ready is a volatile

variable.
Thread 1 | Thread 2
x = 1; if (ready)
ready = true rl = x;

If r1 = x; executes, it will read 1.
Figure 3: Simple Use of Volatile Variables

example of their use can be seen in Figure 3. If ready were
not volatile, the write to it in Thread 1 could be reordered
with the write to x. This might result in r1 containing the
value 0. We define volatiles so that this reordering cannot
take place; if Thread 2 reads true for ready, it must also
read 1 for x.

Locks and unlocks work in a way similar to volatiles: ac-
tions that take place before an unlock must also take place
before any subsequent locks on that monitor. The resulting
property reflects the way synchronization is used to commu-
nicate between threads:

HB Volatile writes are ordered before subsequent volatile
reads of the same variable. Unlocks are ordered before
subsequent locks of the same monitor.

The word subsequent needs to be defined for HB. Syn-
chronization actions include locks, unlocks, and reads of and
writes to volatile variables. We have a total order over all
synchronization actions in an execution of a program; this is
called the synchronization order. An action y is subsequent
to another action x if x comes before y in the synchronization
order.

5.1 Happens-Before Consistency

‘We can describe a simple, interesting memory model using
HB by abstracting a little from locks and unlocks.

A happens-before relationship between two actions is what
enforces an ordering between those actions. For example,
if one action occurs before another in the program order
for a single thread, then the first action happens-before the
second. The program has to be executed in a way that does
not make it appear to the second that it occurred out of
order with respect to the first.

This may seem at odds with the result in Figure 1. How-
ever, a “reordering” is only visible here if we assume that
the program executed all of its actions in a single total or-
der; the surprising behavior makes it appear as if the writes
are occurring before the reads. If the individual threads are
examined in isolation, no reordering is visible; it is simply
not known where the values seen by the reads are written.

The basic principle at work here is that threads in isola-
tion will appear to behave as if they are executing in pro-
gram order; however, the memory model will tell you what
values can be seen by a particular read;

Synchronization actions can create happens-before rela-
tionships between threads. In addition to the happens-
before relationship between actions in a single thread, we
also have (in accordance with HB)

e An unlock on a particular monitor happens-before a
lock on that monitor that comes after it in the syn-
chronization order.

e A write to a volatile variable happens-before a read of

that volatile variable that comes after it in the syn-
chronization order.

e A call to start a thread happens-before the actual start
of that thread.

e The termination of a thread happens-before a join per-
formed on that thread.

e Happens-before is transitive. That is, if a happens-
before b, and b happens-before ¢, then a happens-
before c.

We say that it is happens-before consistent for a read to
see a write in an execution of a program in two cases. First,
a read is happens-before consistent if the write happens-
before the read and there is no intervening write to the same
variable. So, if a write of 1 to x happens-before a write
of 2, and the write of 2 happens-before a read, then that
read cannot see the value 1. Second, it is happens-before
consistent for the read to see the write if the write does not
happen-before the read. If the read does not happen-before
the write, then the read is allowed to see the write. This can
happen, for example, if the write occurs in another thread
(as in Figure 1).

If all of the reads in an execution see writes they are
happens-before consistent to see, then we say that execu-
tion is happens-before consistent. Note that happens-before
consistency implies that every read must see a write that
occurs somewhere in the program.

Although it is simple, happens-before consistency is not
a good memory model. Notice that the behavior we want
to disallow in Figure 2 is happens-before consistent. If both
writes occur, and both reads see them, then both reads see
writes that they are allowed to see.

Nevertheless, happens-before consistency provides a good
outer bound for our model; based on HB, all executions must
be happens-before consistent. Later sections of this paper
(mostly Section 7) discuss ways of locating a more exact
bound; for now, we focus on how happens-before affects im-
plementation.

5.2 Implementing Synchronization

At the abstract level, happens-before consistency provides
a relatively simple memory model. In this section, we talk a
little about how we implement happens-before guarantees.

A happens-before relationship can be thought of as an
ordering edge with two points; we call the start point a
release, and the end point an acquire. Unlocks and volatile
writes are release actions, and locks and volatile reads are
acquire actions.

An acquire ensures an ordering with a previous release.
Consider an action that takes place before an acquire. It
may or may not have been visible to actions that took place
before the previous release, depending on how the threads
are scheduled. If we move the access to after the acquire, we
are simply saying that the access is definitely scheduled after
the previous release. This is therefore a legal transformation.
For example, in Figure 3, if there were a read of a normal
variable that occurred before the read of ready, then it could
be moved after the read of ready.

Similarly, the only thing that the release does is ensure an
ordering with a subsequent acquire. Consider an action that
takes place after a release. It may or may not be visible to

38

Initially, v1 == v2 ==

Thread 1 | Thread 2
vl = 1; v2 = 2;

Thread 3 | Thread 4
rl =vl; | r3 = v2;
r2 = v2; | rd = vi;
Isrl == r3 == 1, r2 == r4 == 0 legal behavior?
Figure 4: Volatiles Must Occur In A Total Order

Initially, x ==y == v == 0, v is volatile. This is clear cut, implementable, and has the unique prop-
Thread 1 ‘ Thread 2 erty that the original Java memory model not only came
rl =x; 13 =y; down on the same side, but was also clear on the subject.
v=_0; v =0 Another issue that arises with volatiles has come to be
r2 :1V§ rd :1"? known as strong versus weak volatility. There are two pos-
y=1 |x=1L

Is the behavior r1 == r3 == 1 possible?
Figure 5: Strong or Weak Volatiles?

Initially, a == b == v == 0, v is volatile.
Thread 1 | Thread 2
rl = a; do {
if (r1 == 0) r2 = b;
v =1; r3 = v;
else } while (2 + r3 < 1);
b=1; a=1;
Correctly synchronized, so r1 == 1 is illegal

Figure 6: Another Surprising Correctly Synchro-
nized Program

particular actions after the subsequent acquire, depending
on how the threads are scheduled. If we move the access to
before the release, we are simply saying that the access is
definitely scheduled before the next acquire. This is there-
fore also a legal transformation. For example, in Figure 3, if
there were a write to a normal variable that occurred after
the write to ready, then it could be moved before the write
to ready.

All of this is simply a roundabout way of saying that ac-
cesses to normal variables can be reordered with a following
volatile read or monitor enter, or a preceding volatile write
or monitor exit, This implies that normal accesses can be
moved inside locking regions, but not out of them; for this
reason, we sometimes call this property roach motel seman-
tics.

It is relatively easy for compilers to ensure this property;
indeed, most do already. Processors, which also reorder in-
structions, often need to be given memory barrier instruc-
tions to execute at these points in the code to ensure that
they do not perform the reordering. Processors often provide
a wide variety of these barrier instructions — for information
about which are needed on which processor and for which
action, consult [11].

5.3 Additional Guarantees for Volatiles

Figure 4 gives us another interesting glimpse into the guar-
antees we provide to programmers. The reads of vl and v2
should be seen in the same order by both Thread 3 and
Thread 4. The memory model does not allow writes to
volatiles to be seen in different orders by different threads.
In fact, it makes a much stronger guarantee:

VolatileAtomicity All accesses to volatile variables are
performed in a total order.

sible interpretations of volatile, according to the happens-
before order:

e Strong interpretation There is a happens-before re-
lationship from each write to each subsequent read of
that volatile.

e Weak interpretation There is a happens-before re-
lationship from each write to each subsequent read of
that volatile that sees that write.

In Figure 5, under the weak interpretation, the read of v in
each thread might see its own volatile write. If this were the
case, then the happens-before edges would be redundant,
and could be removed. The resulting code could behave
much like the simple reordering example in Figure 1.

To avoid confusion stemming from when multiple writer
threads are communicating to reader threads via a single
volatile variable, Java supports the strong interpretation.

StrongVolatile There must be a happens-before relation-
ship from each write to each subsequent read of that
volatile.

5.4 Optimizers Must Be Careful

Optimizers have to consider volatile accesses as carefully
as they consider locking. In Figure 6, we have a correctly
synchronized program. When executed in a sequentially
consistent way, Thread 2 will loop until Thread 1 writes
to v or b. Since the only value available for the read of a to
see is 0, r1 will have that value. As a result, the value 1 will
be written to v, not b. There will therefore be a happens-
before relationship between the read of a in Thread 1 and
the write to a in Thread 2.

Knowing that the write to a will always happen, we might
want to apply the principle that we can reorder the write to
a with the loop. In this case, Thread 1 would be able to see
the value 1 for a, and write to b. Thread 2 would see the
write to b and terminate the loop. Since b is not a volatile
variable, there would be no ordering between the read in
Thread 1 and the write in Thread 2. There would therefore
be data races on both a and b.

The result of this would be a correctly synchronized pro-
gram that does not behave in a sequentially consistent way.
This violates DRF, so we do not allow it. The need to
prevent this sort of reordering caused many difficulties in
formulating a workable memory model.

Compiler writers need to be very careful when reordering
code past all synchronization points, not just those involving
locking and unlocking.

39

Before compiler transformation

Initially, a = 0, b = 1

Thread 1 | Thread 2

1: rl = a; 5: 13 = b;
2: r2 = a; 6: a = r3;
3: if (r1 == r2)

4: b = 2;

Is r1 == r2 == r3 == 2 possible?

After compiler transformation

Initially, a = 0, b = 1

Thread 1 | Thread 2
4: b = 2; 5: 13 = b;
1: rl1 = a; 6: a = r3;
2: r2 =ril;

3: if (true) ;
rl == r2 == r3 == 2 is sequentially
consistent

Figure 7: Effects of Redundant Read Elimination

5.5 Optimizations Based on Happens-Before

Notice that lock and unlock actions only have happens-
before relationships with other lock and unlock actions on
the same monitor. Similarly, accesses to a volatile vari-
able only create happens-before relationships with accesses
to the same volatile variable.

There have been many optimizations proposed (for exam-
ple, in [15]) that have tried to remove excess, or “redundant”
synchronization. One of the requirements of the Java mem-
ory model was that redundant synchronization (such as locks
that are only accessed in a single thread) could be removed.

One possible memory model would require that all syn-
chronization actions have happens-before relationships with
all other synchronization actions. If we forced all synchro-
nization actions to have happens-before relationships with
each other, none of them could ever be described as redun-
dant — they would all have to interact with the synchroniza-
tion actions in other threads, regardless of what variable or
monitor they accessed. Java does not support this; it does
not simplify the programming model sufficiently to warrant
the additional synchronization costs.

This is therefore another of our guarantees:

RS Synchronization actions that only introduce redundant
happens-before edges can be treated as if they don’t
introduce any happens-before edges.

This is reflected in the definition of happens-before. For
example, a lock that is only accessed in one thread will only
introduce happens-before relationships that are already cap-
tured by the program order edges. This lock is redundant,
and can therefore be removed.

6. TRANSFORMATIONS THAT INVOLVE
DEPENDENCIES

In Section 3, we gave Reorderl, which is a guarantee that
independent actions can be reordered. Reorderl is a strong
guarantee, but not quite strong enough. Sometimes, com-
pilers can perform transformations that have the effect of
removing dependencies.

For example, the behavior shown in Figure 7 is allowed.
The compiler should be allowed to

e climinate the redundant read of a, replacing r2 = a
with r2 = ri, then

e determine that the expression r1 == r2 is always true,
eliminating the conditional branch 3, and finally

e move the write 4: b = 2 early.

Initially, x == y ==

Thread 1 Thread 2
rl = x; r3 =y;
r2 =1+ ri*xrl - rl; | x = r3;

y = 1r2;

rl == r2 == r3 == 1 is legal behavior

Figure 8: Compilers Can Think Hard About When
Actions Are Guaranteed to Occur

Initially, x == y == 0
Thread 1 | Thread 2
rl = x; r3 =y;
if (r1 == 1) | if (xr2 == 1)
y =1; x =1;
if (r2 == 0)
x =1;
rl == r2 == 1 is legal behavior

Figure 9: Sometimes Dependencies are not Obvious

After the compiler does the redundant read elimination,
the assignment 4: b = 2 is guaranteed to happen; the sec-
ond read of a will always return the same value as the first.
Without this information, the assignment seems to cause
itself to happen. With this information, there is no depen-
dency between the reads and the write. Thus, dependence-
breaking optimizations can also lead to apparent cyclic ex-
ecutions.

Note that intra-thread semantics guarantee that if r1 #
r2, then Thread 1 will not write to b and r3 == 1. Addi-
tionally, either r1 == 0, r2 == 1, orrl == 1, r2 == 0.

Figure 8 shows another surprising behavior. In order to
see the result r1 == r2 == 1, it would seem as if Thread 1
would need to write 1 to y before reading x. However, it
also seems as if Thread 1 can’t know what value r2 will be
until after x is read.

In fact, it is easy for the compiler to perform an inter-
thread analysis that shows that only the values 0 and 1 will
be written to x. Knowing that, the compiler can determine
that the quadratic equation always returns 1, resulting in
Thread 1’s always writing 1 to y. Thread 1 may, therefore,
write 1 to y before reading x. The write to y is not dependent
on the values seen for x. Our analysis of the program reveals
that there is no real dependency in Thread 1.

A similar example of an apparent dependency can be seen
in the code in Figure 9. In the same way as it does for Fig-
ure 8, a compiler can determine that only the values 0 and 1
are ever written to x. As a result, the compiler can remove

40

Initially, x = 0
Thread 1 | Thread 2

rl = x; r2 = x;
x =1; X = 2;
rl == 2 and r2 == 1 is a legal behavior

Figure 10: An Unexpected Reordering

Initially, x ==y == 10
Thread 1 | Thread 2

rl = x; r2 =y;
y =rl; X = r2;
Incorrectly Synchronized: But r1 == r2 == 42 Still

Cannot Happen
Figure 11: An Out Of Thin Air Result

the dependency and move the write to x to the beginning of
Thread 2. If the resulting code were executed in a sequen-
tially consistent way, it would result in the circular behavior
described.

It is clear, then, that compilers can perform many opti-
mizations that remove dependencies. So we make another
guarantee:

Reorder2 If a compiler can detect that an action will al-
ways happen (with the same value written to the same
variable), it can be reordered regardless of apparent
dependencies.

Like Reorderl, this guarantee does not allow an imple-
mentation to reorder actions around synchronization actions
arbitrarily. In Figure 6, for example, we saw an example of
this: we could not reorder the accesses to a because of the
happens-before relationships.

Even though Reorderl and Reorder2 are strong guaran-
tees for compilers, they are not a complete set of reorderings
allowed. They are simply a set that is always guaranteed to
be allowed.

6.1 Reordering Not Visible to Current Thread

Figure 10 contains a small but interesting example. The
behavior r1 == 2 and r2 == 1 is a legal behavior, although
it may be difficult to see how it could occur. A compiler
would not reorder the statements in each thread; this code
must never result in r1 == 1 or r2 == 2. However, the be-
havior r1 == 2 and r2 == 1 might be allowed by an opti-
mizer that performs the writes early, but does so without
allowing them to be visible to local reads that came before
them in program order. This behavior, while surprising,
is allowed by several processor memory architectures, and
therefore is one that should be allowed by a programming
language memory model.

7. OUT-OF-THIN-AIR GUARANTEES

In Figure 2, the writes are control dependent on the reads.
Figure 11 is a very similar example; in this case, the writes
will always happen, but the values written are data depen-
dent on the reads.

This is no longer a correctly synchronized program, be-
cause there is a data race between Thread 1 and Thread 2.
However, as it is in many ways a very similar example, we
would like to provide a similar guarantee. In this case, we
say that the value 42 cannot appear out of thin air.

In fact, the behavior of this case may be even more of a
cause for concern than the other. If, for example, the value
that was being produced out of thin air was a reference to
an object which the thread was not supposed to have, then
such a transformation could be a serious security violation.
There are no reasonable compiler transformations that pro-
duce this result.

An example of this can be seen in Figure 12. Let’s assume
that there is some object o which we do not wish Thread 1
or Thread 2 to see. o has a self-reference stored in the field
f. If our compiler were to decide to perform an analysis that
assumed that the reads in each thread saw the writes in the
other thread, and saw a reference to o, then r1 = r2 = r3
= o would be a possible result. The value did not spring
from anywhere — it is simply an arbitrary value pulled out
of thin air.

Determining what constitutes an out-of-thin-air read is
complicated. A first (but inaccurate) approximation would
be that we don’t want reads to see values that couldn’t be
written to the variable being read in some sequentially con-
sistent execution. Because the value 42 is never written in
Figure 11, no read can ever see it.

The problem with this solution is that a program can
contain writes whose program statements don’t occur in any
sequentially consistent executions. Imagine, as an example,
a write that is only performed if the value of r1 + r2 is
equal to 3 in Figure 1. This write would not occur in any
sequentially consistent execution, but we would still want a
read to be able to see it.

One way to think about these issues is to consider when
actions can occur in an execution. These transformations
all involve moving actions earlier than they would otherwise
have occurred. You can perform an action earlier in an
execution than it would have otherwise occurred if, had we
carried on the execution in a sequentially consistent way, it
would have been possible for the action to have occurred
afterward.

If we had, for example, a write that was control dependent
on the value of r1 + r2 being equal to 3 in Figure 1, we
would know that write could have occurred in an execution
of the program that behaves in a sequentially consistent way
after the result of r1 + r2 is determined.

We can apply this form of reasoning to our other example,
as well. In Figure 1, the writes to x and y can occur first
because they will always occur in sequentially consistent ex-
ecutions. In Figure 7, the write to b can occur early because
it occurs in a sequentially consistent execution when r1 and
r2 see the same value. In Figure 11, the writes of 42 to y
and x cannot happen, because they do not occur in any se-
quentially consistent execution. This, then, is our first “out
of thin air” guarantee:

ThinAirl A write can occur earlier in an execution than it
would have otherwise occurred. However, that write
must have been able to occur without the assumption
that any reads that take place after the point where
the write occurs see non-sequentially consistent values.

7.1 When Actions Can Occur

7.1.1 Disallowing Some Results

It is difficult to define the boundary between the kinds
of results that are reasonable and the kind that are not.
The example in Figure 11 provides an example of a result

41

Initially, x = null, y = null.
o is an object with a field £ that refers to o.
Thread 1 ‘ Thread 2

rl = x; r3 =y;
r2 = x.f; | x = r4;
y = r2;
rl == r2 == o is not an acceptable behavior

Figure 12: An Unexpected Reordering

Initially, x == y == z ==

Thread 1 | Thread 2

r3 = x; r2 =y;

if (r3 ==0) | x = r2;
x = 42;

rl = x;

y =rl;

rl == r2 == r3 == 42 is a legal behavior
Figure 15: A Complicated Inference

that is clearly unacceptable, but other examples may be less
straightforward.

The examples in Figures 13 and 14 are similar to the ex-
amples in Figures 2 and 11, with one major distinction. In
those examples, the value 42 could never be written to x in
any sequentially consistent execution. In the examples in
Figures 13 and 14, 42 can be written to x in some sequen-
tially consistent executions. Could it be legal for the reads
in Threads 1 and 2 to see the value 42 even if Thread 4 does
not write that value?

This is a potential security issue. Consider what hap-
pens if, instead of 42, we write a reference to an object that
Thread 4 controls, but does not want Threads 1 and 2 to
see without Thread 4’s first seeing 1 for z. If Threads 1 and
2 see this reference, they can be said to manufacture it out
of thin air.

This sort of behavior is not known to result from any
combination of known reasonable and desirable optimiza-
tions. However, there is also some question as to whether
this reflects a real and serious security requirement. In Java,
the semantics usually side with the principle of having safe,
simple and unsurprising semantics when possible. Thus, the
Java Memory Model prohibits the behaviors shown in Fig-
ures 13 and 14.

7.1.2 Allowing Other Results

Now consider the code in Figure 15. A compiler could
determine that the only values ever assigned to x are 0 and
42. From that, the compiler could deduce that, at the point
where we execute rl1 = x, either we had just performed a
write of 42 to x, or we had just read x and seen the value
42. In either case, it would be legal for a read of x to see
the value 42. By the principle we articulated as Reorder2,
it could then change r1 = x to r1 = 42; this would allow
y = rl to be transformed to y = 42 and performed earlier,
resulting in the behavior in question.

This is a reasonable transformation that needs to be bal-
anced with the out-of-thin-air requirement. Notice that the
code in Figure 15 is quite similar to the code in Figures 13
and 14. The difference is that Threads 1 and 4 are now
joined together; in addition, the write to x that was in
Thread 4 is now performed in every sequentially consistent
execution — it is only when we try to get non-sequentially

Initially, x = y = 0; a[0] = 1, a[1] = 2

Thread 1 | Thread 2
rl = x; r3 =y;
alrl] = 0; | x = r3;
r2 = al[0];
y = r2;
rl == r2 == r3 == 1 is unacceptable

Figure 16: Another Out Of Thin Air Example

consistent results that the write does not occur.

There is a significant difference between these two cases.
One way of articulating it is that in Figure 15, we know
that r1 = x can see 42 without reasoning about what might
have occurred in another thread because of a data race. In
Figures 13 and 14, we need to reason about the outcome of
a data race to determine that r1 = x can see 42.

This is, then, what differentiates out of thin air reads from
those that are allowable. A solution must be available that
does not involve reasoning about what happens in the exe-
cution solely because of data races. This is also our second
out of thin air principle:

ThinAir2 Actions may only be performed earlier than their
original place in the program if it can be determined
that they could occur in the execution without assum-
ing that any additional reads see values via a data
race.

We can use ThinAir2 as a basic principle to reason about
multithreaded programs. Consider, for example, the code in
Figure 16. The only way in which the unacceptable result
could occur is if a write of 1 to one of the variables were
performed early. However, we cannot reason that a write of
1 to x or y will occur without reasoning about data races.
Therefore, this result is impossible.

7.2 Isolation

Sometimes, when debugging a program, we are given an
execution trace of that program in which the error occurred.
Given a particular execution of a program, the debugger can
create a partition of the threads and variables in the program
so that if a thread accessed a variable in that execution, then
the thread and variable are in the same partition. Monitors
can be included in with variables for the purposes of this
discussion.

Given this partitioning, you can explain the behavior in
the execution of the threads in each partition without hav-
ing to examine the behavior or code for the other threads.
If a thread or a set of threads is isolated from the other
threads in an execution, the programmer can reason about
that isolated set separately from the other threads. This is
called the isolation principle:

Isolation Consider a partition P of the threads and vari-
ables in the program so that if a thread accessed a
variable in that execution, then the thread and vari-
able are in the same partition. Given P, you can ex-
plain the behavior in the execution of the threads in
each partition without having to examine the behavior
or code for the other threads.

How is this helpful? Consider the code in Figure 14. If
we allowed the unacceptable execution, then we could say

42

Initially, x == y == z ==

Thread 1 | Thread 2 | Thread 3 | Thread 4

rl = x;
y =rl;

r2 =y;
X = r2;

z = 42;

r0 = z;
x = r0;

Isr0 == 0, r1l == r2 == 42 legal behavior?
Figure 13: Can Threads 1 and 2 see 42, if Thread 4 didn’t write 427

Initially, x == y == z ==

| Thread 3 | Thread 4

Thread 1 | Thread 2

rl = x; r2 =y;

if (r1 !=0) | if (x2 !'= 0)
y =rl; X = r2;

z =1; r0 = z;
if (r0 == 1)
x = 42;

Isr0 == 0, r1 == r2 == 42 legal behavior?
Figure 14: Can Threads 1 and 2 see 42, if Thread 4 didn’t write to x?

Initially, a=b=c=d =0

Thread 1/2/3 Thread 4
rl = a;
if (r1 == 0)
b=1; r4d = d;
r2 = b; if (r4 == 1) {
if (r2 == 1) c=1;
c=1; a=1;
r3 = c; }
if (r3 == 1)
d=1;
Behavior in question: 11 ==13 ==1r4d == 1; 12 == 0

Figure 18: Result of thread inlining of Figure 17;
behavior allowed by semantics

that the actions in Threads 3 and 4 affected the actions in
Threads 1 and 2, even though they touched none of the same
variables. Reasoning about this would be difficult, at best.

The Isolation principle closely interacts with our out of
thin air properties. If a thread A does not access the vari-
ables accessed by a thread B, then the only way A could have
really affected B is if A might have accessed those variables
along another program path not taken. The compiler might
speculate that the other program path would be taken, and
that speculation might affect B. The speculation could only
really affect B if B could happen at the same time as A. This
would imply a data race between A and B, and we would
be speculating about that race; this is something ThinAir2
is designed to avoid.

Isolation is not necessarily a property that should be re-
quired in all memory models. It seems to capture a property
that is useful and important in a memory model, but all of
the implications of it are not understood well enough for us
to decide if it must be true of any acceptable memory model.

7.3 Thread Inlining

One behavior that is disallowed by a straightforward in-
terpretation of the out of thin air property that we have
developed is shown in Figure 17. An implementation that
always scheduled Thread 1 before Thread 2 and Thread 2
before Thread 3 could reasonably decide that the write to d
by Thread 3 could be performed before anything in Thread 1
(as long as the guard r3 == 1 evaluates to true). This could
lead to a result where the write to d occurs, then Thread 4
writes 1 to ¢ and a. The write to b does not occur, so the

read of b by Thread 2 sees 0, and does not write to c. The
read of ¢ in Thread 3 then sees the write by Thread 4.

However, this requires reasoning that Thread 3 will see a
value for c that is given by a data race. A straightforward
interpretation of ThinAir2 therefore disallows this.

In Figure 18, we have another example, similar to the
one in Figure 17, where Threads 1, 2 and 3 are combined.
We can use the same reasoning that we were going to use
for Figure 17 to decide that the write to d can occur early.
Here, however, it does not clash with ThinAir2: we are only
reasoning about the actions in the combined Thread 1/2/3.
The behavior is therefore allowed in this execution.

As a result of this distinction, the compiler writer must be
careful when considering inlining threads. When a compiler
does decide to inline threads, as in this example, it may not
be possible to utilize the full flexibility of the Java memory
model when deciding how the resulting code can execute.

8. RELATED WORK

The happens-before relationship has a long history in con-
currency literature. It is first described in [9)].

The notion that correctly synchronized programs should
behave in a sequentially consistent way was first articulated
in [3].

An earlier, substantially simpler version of this work ap-
peared in [12]. It did not address the full range of causality
issues addressed here.

Most multithreaded languages do not provide strong se-
mantics for multithreaded programs in the presence of data
races. The Ada programming language [1], for example,
refers to such programs as “erroneous”, and discusses them
no further. The C# language’s [4] underlying framework,

the Common Language Infrastructure [5], is also multithreaded;

it explicitly allows optimizations to take place when there
are data races, but it does not offer specific semantics.

9. CONCLUSION

The adoption of a new Java memory model was a long
process. In order to carefully define the requirements, the
needs of programmers, compiler writers and processor archi-
tects had to be carefully balanced. The end result is a strong
statement, not only of what the requirements are for Java
(as listed in Figure 19), but one that identifies and classifies
these issues for future memory models.

10. ACKNOWLEDGMENTS

43

Initially, a=b=c=d =0

Thread 1 Thread 2 Thread 3 Thread 4
r4d = d;
rl = a; r2 = b; r3 = c; if (r4 == 1) A
if (r1 == 0) if (r2 == 1) if (r3 == 1) c =1;
b=1; c=1; d =1; a=1;
}
Behavior in question: 11 ==13 ==1r4 == 1;12 == 0

Figure 17: Behavior disallowed by semantics

[15] Eric Ruf. Effective Synchronization Removal for Java.

The authors wish to thank the members of the Java mem- In ACM SIGPLAN 2000 Conference on Programming
ory model mailing list for their time and contribution to Language Design and Implementation, Vancouver, BC
this effort. Gratitude is particularly extended to Doug Lea Canada, June 2000.

and Sarita Adve for their contributions. Gramercy, also, to
David Hovemeyer, for his feedback on this paper.

11. REFERENCES

[1] Ada Joint Program Office. Ada 95 Rationale.
Intermetrics, Inc., Cambridge, Massachusetts, 1995.

[2] Sarita Adve. Designing memory consistency models
for shared-memory multiprocessors. Technical Report
1198, University of Wisconsin, Madison, December
1993. Ph.D. Thesis.

[3] Sarita Adve and Mark Hill. Weak ordering—A new
definition. In Proc. of the 17th Annual Int’l Symp. on
Computer Architecture (ISCA’90), pages 2-14, 1990.

[4] ECMA. C# Language Specification, December 2002.
http://www.ecma-
international.org/publications/standards/Ecma-
334.htm.

[5] ECMA. Common Language Infrastructure (CLI),
December 2002. http://www.ecma-
international.org/publications/standards/Ecma-
335.htm.

[6] James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. Addison Wesley, 1996.

[7] Java Specification Request (JSR) 133. Java Memory
Model and Thread Specification Revision, 2004.
http: //jcp.org/jsr/detail/133.jsp.

[8] The Java memory model. Mailing list and web page.
http://www.cs.umd.edu/ users/ pugh/ java/
memoryModel.

[9] Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. CACM, 21(7):558-564,
1978.

[10] Leslie Lamport. How to make a multiprocessor
computer that correctly executes multiprocess
programs. IEEE Transactions on Computers,
9(29):690-691, 1979.

[11] Doug Lea. JSR-133 Cookbook, 2004. Available from
http: //gee.cs.oswego.edu/dl/jmm/cookbook.html.

[12] Jeremy Manson and William Pugh. Core semantics of
multithreaded Java. In ACM Java Grande Conference,
June 2001.

[13] William Pugh. Fixing the Java memory model. In
ACM Java Grande Conference, June 1999.

[14] William Pugh. The Java memory model is fatally
flawed. Concurrency: Practice and Ezperience,
12(1):1-11, 2000.

44

Name

[Description

[Exemplar

Guarantees for Optimizers

Reorderl

Independent actions can be reordered.

Figure 1

Reorder2

If a compiler can detect that an action will always
happen (with the same value written to the same
variable), it can be reordered regardless of apparent
dependencies.

Figures 7, 8, 9, 10, 15

RS

Synchronization actions that only introduce redun-
dant happens-before edges can be treated as if they
don’t introduce any happens-before edges.

Section 5.5

Guarantees for Programmers

DRF

Correctly synchronized programs have sequentially
consistent semantics.

Figures 2, 6

HB

Volatile writes are ordered before subsequent
volatile reads of the same variable. Unlocks are or-
dered before subsequent locks of the same monitor.

Figure 3

VolatileAtomicity

All accesses to volatile variables are performed in a
total order.

Figure 4

StrongVolatile

There is a happens-before relationship from each
write to each subsequent read of that volatile.

Figure 5

ThinAirl

A write can only occur earlier in an execution than
it would have otherwise occurred if that write would
have occurred without assuming that any addi-
tional, later reads see non-sequentially consistent
values.

Figures 11, 12, 16

ThinAir2

Actions may only be performed earlier than their
original place in the program if it can be determined
that they could occur in the execution without as-
suming that any additional reads see values via a
data race.

Figures 13, 14, 17, 18

Isolation

Consider a partition P of the threads and variables
in the program so that if a thread accessed a vari-
able in that execution, then the thread and variable
are in the same partition. Given P, you can explain
the behavior in the execution of the threads in each
partition without having to examine the behavior
or code for the other threads.

Figures 13, 14

Figure 19: Properties of the Java Memory Model

45

Exceptions and side-effects in atomic blocks

Tim Harris
University of Cambridge Computer Laboratory
15 JJ Thomson Avenue
Cambridge, UK, CB3 OFD

tim.harris@cl.cam.ac.uk

ABSTRACT

In our paper at OOPSLA 2003 we discussed the design and
implementation of a new atomic keyword as an extension
to the Java programming language. It allows programs to
perform a series of heap accesses atomically without needing
to use mutual exclusion locks. We showed that data struc-
tures built using it could perform well and scale to large
multi-processor systems. In this paper we extend our sys-
tem in two ways. Firstly, we show how to provide an ex-
plicit ‘abort’ operation to abandon execution of an atomic
block and to automatically undo any updates made within
it. Secondly, we show how to perform external I/O within
an atomic block. Both extensions are based on a single ‘ex-
ternal action’ abstraction, allowing code running within an
atomic block to request that a given pre-registered operation
be executed outside the block.

1. INTRODUCTION

In recent work we have been investigating the use of Soft-
ware Transactional Memory as a mechanism for implement-
ing language-level concurrency control features [6]. In our
system, developed as an extension to the Java programming
language, we have introduced a new keyword atomic which
allows a group of statements to execute atomically with re-
spect to the operation of other threads. As well as updating
objects’ fields, these statements can perform a wide range
of operations including invoking methods and instantiating
new objects. We also allow atomic statements to be guarded
by boolean conditions, with execution blocking until the con-
dition is satisfied. Figure 1 illustrates this by showing the
implementation of a single-cell shared buffer.

In this paper we expand the range of operations which can
be performed within atomic blocks in two different ways.
The first extension we consider is what behaviour to pro-
vide when an atomic block terminates early by an excep-
tion being thrown. The dilemma here is whether to roll-
back updates made in the atomic block or whether to retain
them and propagate the exception. Unfortunately there is a
Catch-22 situation: if we roll-back the updates then the ex-
ception object itself could be lost, leaving nothing to prop-
agate. We discuss this in Section 2 and propose a hybrid
model in which certain exceptions cause atomic blocks to
be aborted and in which the exception thrown outside the
block is a deep copy of the exception raised within it.

The second area we investigate is how to deal with I/O
performed within an atomic block: our original design for-
bade any native method invocations which made most I/0
operations unavailable. In Section 3 we discuss a number of

46

class Buffer {
private boolean full;
private int value;

public void put(int new_value)
throws InterruptedException
{
atomic (!full) { // Wait until buffer is empty
full = true;
value = new_value;
}
}

public int get() throws InterruptedException
{
atomic (full) { // Wait until buffer is full
full = false;
return value;
}
}
}

Figure 1: A single-cell shared buffer implemented
using atomic blocks.

ways in which I/O could be supported and propose a model
in which communication libraries must be adapted for use
within atomic blocks. This places an onus on the library’s
implementer but, we argue, allows better performance and
scalability than automatic support for native methods.

Our approach for supporting both of these new features
is based on a single ‘external action’ abstraction which we
introduce in Section 4. An external action object exports an
operation which can be invoked from within an atomic block
but which is executed within the context that the object was
instantiated.

In Section 5 we discuss our experience using external ac-
tions to implement our exception-propagation model and
I/0O system. Finally, Section 6 discusses related work and
Section 7 concludes, highlighting a number of areas for fu-
ture work along with dead-ends we explored in developing
the ‘external action’ abstraction.

In the remainder of this introduction we briefly review
the intended semantics of atomic blocks in Section 1.1 and
outline their implementation over a Software Transactional
Memory in Section 1.2.

1.1 Intended semantics of atomic blocks

We informally define the semantics of non-nesting atomic
blocks by (7) specifying their behaviour when executed by
a single thread running in isolation and (#) requiring that,
in a multi-threaded system, they behave as-if the executing
thread ran in isolation while within the block.

There are two cases to consider based on whether or not
the atomic block contains a guard condition. If there is no
guard condition then the following two code fragments are
equivalent:

atomic {
S;
}

{s;}

Similarly, if a guard condition is present then the following
two code fragements behave equivalently after blocking until
the guard E is presciently known to yield true or terminate
with an exception:

atomic (E) {
S;
}

{E; s;}

These definitions have three major consequences. Firstly,
they mean that if a system is genuinely single-threaded then
the contents of an atomic block can be executed directly
when its guard is satisfied. Secondly, these definitions lead
to the semantics for exception propagation in our original
paper — that is, if E or S terminates with an exception then
the updates made up to that point are retained [6]. Thirdly,
these definitions allow the guard expression E to have side
effects — this may be important in practice if, for example,
the guard accesses a self-organizing data structure such as
a splay tree [4].

There are numerous subtleties which we elide here. These
include dynamically nesting blocks, interruption while wait-
ing, the interaction between class-loading and atomic block
execution, thread creation within atomic blocks and the use
of condition variables within atomic blocks. These issues are
ones which would need to be considered carefully if incorpo-
rating atomic blocks into the design of a new language.

1.2 Implementation overview

Although we define the semantics of atomic blocks in terms
of single-threaded execution we do not envisage that that
would form the basis of an implementation. Instead, our cur-
rent implementation is designed to allow most non-conflicting
atomic blocks to execute concurrently.

The system is built in two layers. The lower layer is
a word-based software transactional memory (STM). This
allows groups of memory accesses to be performed within
transactions which commit atomically. The STM is imple-
mented in C within the Java Virtual Machine and provides
operations for starting a new transaction (STMStart), abort-
ing the current transaction (STMAbort), committing the cur-
rent transaction (STMCommit), for reading a word within the
context of the current transaction (STMRead) and for updat-
ing a word within the context of the current transaction
(STMWrite). There are two further operations to validate
transactions and to block threads while waiting for condi-
tions to become true — these are not relevant to the current

paper.

47

boolean done =
while ('domne) {
STMStart () ;

false;

try {
statements;
done = STMCommit ();

} catch (Throwable t) {
done = STMCommit ();
if (dome) {

throw t;
}
}
}

Figure 2: Code of the form atomic { statements; }
expressed using STM management operations. In
practice exception propagation is complicated by
the fact that the translated code must throw the
same set of exceptions as the original statements.
Heap accesses within the statements (and within any
methods they call) are performed using the STM.

The higher layer of the implementation maps the atomic
keyword onto a series of STM operations. For example,
entering an atomic block requires STMStart to be invoked,
and accesses to shared fields within a block require that
STMRead and STMWrite be used in place of direct heap ac-
cesses. This translation is implemented in the source-to-
bytecode compiler (for transaction management operations)
and the bytecode-to-native compiler (for individual field ac-
cesses). The intermediate Java bytecode format is unchanged.

Our previous paper describes these two levels in detail [6].
As an example, Figure 2 summarises how a basic non-nesting
atomic block without a guard condition may be expressed in
terms of these explicit transaction management operations.

2. MANAGING EXCEPTIONS

The semantics defined in Section 1.1 mean that if an atomic
block terminates with an exception, then any heap updates
made within the block are retained and the exception is
propagated. This allows single-threaded code to be directly
re-used in a multi-threaded environment by inserting atomic
blocks around related accesses to the heap. However, there
are examples where it would seem more convenient for pro-
grammers to be able to roll-back any updates made within
the atomic block up to the point where the exception is
thrown.

For illustration, consider code to move an object between
two collections. The source collection provides a remove
method. The destination collection provides an add method
that fails with an exception if the target collection cannot
hold the item supplied.

Figure 3 shows how a move operation can be implemented
using an atomic block. The code is not elegant; the pro-
grammer must manually implement fix-up operations if the
destination cannot contain the item supplied. Furthermore,
when R1 has to be counteracted by A2, the underlying trans-
action may involve numerous updates even though the ab-
stract state of the two collections is unchanged. This is
a problem in concurrent systems because it increases con-
tention in the memory hierarchy. It may even be necessary

boolean move(Collection s, Collection d, Object o)
{
atomic {
if (!s.remove(o)) { /* R1 */
return false; /* Could not find object */
} else {
try {
d.add(o); /* Al */
} catch (RuntimeException e) {
s.add(o); /* A2 x/

throw e; /* Move failed */
}
return true; /* Move succeeded */
}
}
}
Figure 3: A collection-to-collection move imple-

mented within an atomic block using manual roll-
back. The add operation A2 compensates for R1 if
the object is removed from the source collection but
cannot be inserted into the destination.

to consider exceptions raised by A2 if the object is rejected
by both collections.

Of course, these same observations would hold if the move
method was implemented using mutual exclusion locks. How-
ever, building the system over a STM allows the more con-
venient option of replacing the compensating operation A2
with a request that the STM simply discards any heap up-
dates performed within the atomic block.

2.1 Problems

Although the underlying STM provides an abort operation,
this cannot be used directly to roll-back an atomic block
before propagating the exception which caused the block to
be aborted. The problem is that aborting would undo all of
the updates made in the transaction: if the exception object
was instantiated or modified in it then retaining that object
is incompatible with rolling back the modifications. In the
general case the exception object could be interlinked with
other data structures, making it unclear which modifications
to retain and which to lose.

There are two, more subtle problems with blindly using
exceptions to trigger roll-back. The first is that it could
destroy invariants assumed by existing code. For example,
a library may ensure that a particular kind of exception is
only thrown once a data structure has reached a given state.
This guarantee would be broken if changes leading up to
the exception were rolled back but the exception object was
retained.

The second problem is that if all exceptions trigger roll-
back then it precludes alternative implementations of atomic
blocks which, unlike our STM, do not produce the logging
information necessary to abort a transaction — this might be
true of a scheme based on locking rather than an STM, or
a scheme which includes optimizations for single-threaded
use.

2.2 Design

Our approach is to introduce a new AtomicAbortException
class and to have instances of that, or its subclasses, trigger

48

boolean move(Collection s, Collection d, Object o)
{
try {
atomic {
try {
if (!s.remove(o)) { /* R1 */
return false; /* Could not find object */
} else {
d.add(o); /* A1l */
return true; /* Move succeeded */
}
} catch (RuntimeException e) {
throw new AtomicAbortException();
}
}
} (catch AtomicAbortException e) {
return false; /* Move failed */
}
}

Figure 4: A collection-to-collection move using an
AtomicAbortException for roll-back.

roll-back. This is a checked exception class and so the pro-
grammer must indicate where it may be thrown, allowing a
non-abortable implementation to be used for blocks where
these exceptions are not present.

Figure 4 shows how an atomic collection-to-collection move
could be implemented using roll-back: it is no longer neces-
sary to include explicit compensatory code, and failed moves
will lead to aborted lower-level transactions, reducing con-
tention.

We use object serialization to define what happens when
aborting a block while retaining the exception object which
triggered the abort. This is because the serialized byte-array
form of an object is meaningful between JVMs and therefore
meaningful between an atomic block and its enclosing con-
text. If a block terminates by throwing an exception e whose
serialized representation would be a byte-array b then the
effect of executing the block is equivalent to de-serializing a
byte-array with the same contents as b and then throwing
the resulting exception. Of course, this ‘as if’ definition al-
lows the exception object to be retained and thrown directly
if it is possible to identify that as equivalent through static
analysis.

3. MANAGING I/O OPERATIONS

The second area which we consider in this paper is how to
support atomic blocks with external side effects. In our orig-
inal design we prohibited blocks from invoking any native
method — that is, any method that is not implemented in
Java bytecode. This ultimately precludes the availability of
most I/O operations.

3.1 Problems

It is not possible to allow native methods to be called from
atomic blocks by simply ensuring that JNI heap accesses are
performed using the STM. That would provide no control
over system calls invoked from native methods, or on code
within the JVM which uses internal lower-level interfaces to
bypass JNI.

Of course, there are some operations for which the JVM
cannot guarantee atomicity. For example, the programmer
may define an atomic block to swap the names of two files
by a series of renameTo method calls. Operating system
support would be needed to make these operations appear
atomic to other processes; all that can reasonably be pro-
vided is atomicity in the sense that either all of the oper-
ations in the block appear to occur, or none of them oc-
curs. Again, this is consistent with our intended ‘as-if single
threaded’ semantics from Section 1.1.

Furthermore, different behaviour is appropriate for differ-
ent kinds of I/O operation. For instance, a highly stylized
server implementation may be written as a loop:

void serverLoop(ServerSocket s) {
while (true) {
Socket ¢ = s.acceptConnection(); /*Milx/
Thread t = new Thread() {
public void run() {
atomic {
try {
dealWithClient(c); /*M2x/
} catch (Throwable t) {
throw new AtomicAbortException(t);
}
}
}
3
t.start(Q);
}
}

Connections from clients are received at method call M1 and
each is dealt with in an atomic block in a separate thread
at M2. If an exception occurs in M2 then the effect of the
atomic block is discarded. In this case it may be appropriate
for the external interactions performed between the client
and the server to be carried out directly while executing
the block and for the roll-back to only discard updates to
the state within the server: the exception may indicate an
internal error in the server or one that has been triggered
by a maliciously formed request from a client.

In other cases it might be appropriate for external in-
teractions to be deferred until the block has completed, or
for corresponding compensatory operations to be issued if it
does roll back.

3.2 Design

Rather than directly supporting unmodified native methods,
the approach we take is to provide a set of Java-based in-
terfaces with which an I/O library can implement appropri-
ate buffering semantics. These allow a thread to determine
whether it is in an atomic block and to register call-backs
for when the transaction underlying the block attempts to
commit or abort.

This allows a wide range of behaviour to be implemented.
For instance, an output library can perform its own buffering
of the deferred output, register a callback on commit to flush
the output and register a callback on abort to discard the
buffered state. Similarly, a library performing input can
register a callback on abort to re-buffer the input which had
been presented to the aborted transaction. This approach
allows device-specific forms of buffering to be used — for
example, to distinguish between stream-based input which

49

public class ExampleQutput {
static PrintStream out =
new PrintStream(
new AtomicOutputStream(System.out));

static void print_sum(int x, int y) {
atomic {
int result = x + y;
out.println ("Result is " + result);
}
}
}

Figure 5: An example class instantiating and us-
ing an AtomicOutputStream wrapper to buffer out-
put made within the atomic block in the print_sum
method.

cannot be re-ordered and datagram-based input in which
datagrams may be re-ordered.

For console I/O we have implemented simple wrapper
classes AtomicInputStream and AtomicOutputStream which
provide example buffering layers for use above the ordi-
nary I/O streams. Figure 5 shows an example of how an
AtomicOutputStream can be used. If these I/O features were
integrated fully into the environment then these wrappers
could be provided as the default I/O streams.

4. EXTERNAL ACTIONS

In this section we introduce the ‘external action’ abstraction
with which we implement our exception propagation model
and I/O support libraries. In Sections 4.1 and 4.2 we discuss
two ways of exposing external actions to programmers; we
have implemented the first of these options and, although
we have a thorough design for the second option, we have
not yet tested it in practice.

External actions provide a controlled way in which code
within an atomic block can temporarily perform operations
directly on the heap rather than within the context of the
current transaction. External actions are used in propagat-
ing exceptions in order to marshall the exception object so
that it is available after the transaction is aborted. Exter-
nal actions are used during I/O to invoke native operations
and to perform device-specific buffering to give transactional
behaviour.

The behaviour of external actions are defined in terms
of contexts which represent the different views that threads
may have on the heap at any given moment. Contexts are hi-
erarchical and a single global context exists as the root. Heap
updates are said to occur within a given context, meaning
that they are guaranteed to be visible to threads execut-
ing in that context, or executing within any context nested
inside it.

When a thread enters an atomic block it creates a new
context nested within its current one. When a thread leaves
an atomic block then the nested context is discarded after
promoting any heap updates made within it up to its parent
context. Figure 6 illustrates a set of nested contexts.

The key challenge in Java in designing a mechanism for
temporarily ‘stepping outside’ the current context is mak-
ing it impossible to circumvent encapsulation enforced by
language-based protection. In particular, code executing in

Global context
G

O

d

Rl
(&

€

w

Tl T2

Figure 6: Thread T1 is executing in the global con-
text G. Thread T2 is executing in context H within
G. Thread T3 is executing within context J, nested
two levels deep. Objects allocated in one context
can only contain references to objects allocated in
enclosing contexts, for instance O1 can refer to 02,
but O4 cannot refer to O3.

a given context must not be able to access objects instanti-
ated in an enclosed context — otherwise, for example, there
is no guarantee that the code would even see the objects
correctly initialised.

We deal with this problem by representing external ac-
tions as designated ExternalAction objects and ensuring
that (i) actions are executed in the context within which
the object is instantiated, and (ii) actions’ parameters are
passed by serialization. The first property ensures that free
variables occurring within an action’s definition will refer
to data that is accessible in the context within which the
action executes. The second property ensures that any in-
coming parameters received by the action have been copied
and re-created within the context that the action executes.

We expose contexts to Java programmers as immutable
Context objects which uniquely identify an active context
and allow traversal from it to its enclosing context object. A
static method returns the caller’s current context. A thread
can register a ContextListener with any context that is
contained within its current one. Context listeners receive
three call-backs:

boolean validToCommit (Context c);
void actionOnCommit (Context c);
void actionOnAbort(Context c);

These three operations are used to perform a two-phase
commit of updates that external actions have associated
with a context. The first of these, validToCommit, is called
when deciding whether the context should be destroyed or
whether, at the end of an atomic block, updates made within
it should be merged into its parent context. If any context
listener returns false then the context must be destroyed.
The second and third call-backs are called to to inform the
listener of the outcome of this voting.

External actions are implemented by extending the STM
interface with two context-control operations: a method for
setting the current transactional context used by STM op-
erations and a method for doing an inter-context copy of
arrays of bytes when serializing parameters to external ac-
tions. The remainder of the implementation is Java-based;
the STMCommit operation becomes a Java method which calls
validToCommit on any ContextListener objects before at-
tempting to commit the underlying STM transaction.

The two context-control operations are available only to

50

public class ExampleActionCall {
static int x = O;

static VoidExternalAction printX =
new VoidExternalAction() {
public void action(Context caller_context) {
System.out.println(" x=" + x);

3}
static void increment_x() {
atomic {
printX.doAction();
}
}
}

Figure 7: An example code fragment defining and
invoking an external action.

trusted code. However, we have investigated two ways of
exposing them safely to ordinary code such as applications
and I/0 library implementations. The first of these, which
we describe in Section 4.1, allows a single operation to be
defined at a time. The second design, in Section 4.2, exports
a whole interface of external actions: it is more verbose for
short examples but is more convenient for non-trivial cases.

4.1 Operation-based external actions

The first way of defining external actions uses a simple
mechanism in which the action is defined by overriding an
action method on an ExternalAction class. A separate
trusted doAction method uses the context-control exten-
sions to marshal parameters for the action and to invoke it
in the appropriate context.

Figure 7 illustrates this: the VoidExternalAction class
is extended with an action method that is called from the
context created in increment_x but which is executed in the
global context that was active when printX was initialized.

Generic types and variable-length argument lists can sim-
plify the infrastructure for defining this form of external ac-
tions by avoiding the proliferation of separate kinds of action
for different parameter and return types. Aside from actions
with void return type, a single parametric definition would
suffice.

However, with this approach, defining external actions
which can throw checked exceptions remains problematic:
the definition cannot be made parametric on a set of ex-
ceptions. In general the programmer has to follow inele-
gant approaches such as hiding checked exceptions within
unchecked wrappers.

4.2 Interface-based external actions

The second way of defining external actions is more suitable
for use in larger settings where the entire set of existing
methods on an object are to be encapsulated as external
actions. The approach is to allow an object to be exported
from one context and for all method invocations on it to be
made via stubs which behave as external actions.

The need for this kind of interface-based design became
particularly apparent while creating wrappers for use around
the Java Transaction API in which large numbers of boil-
erplate actions otherwise had to be written to wrap exist-

// Definition of interface exported
interface printXIfc {

public void printX();
}

// Signature of export operation
public class ExternalAction {
static <F> F export(F imp) {

}
}

// Invocation of external action
public class ExampleActionCall {
static int x = 0;

static printXIfc printer =
ExternalAction.export (
new printXIfc() {
public void printX() {
System.out.println(" x=" + x);
}
b

static void increment_x() {
atomic {
printer.printX();
}
}
}

Figure 8: An external action defined using an inter-
face.

ing implementations of interfaces such as UserTransaction,
PreparedStatement and Connection.

Figure 8 illustrates how the earlier increment_x example
from Figure 7 could be expressed in this alternative form.
As before, the example ultimately prints the contents of a
field x in the global context. This operation is performed
by (i) providing an interface printXIfc which defines the
signatures of the methods to be exported as external ac-
tions, (i) defining an implementation of these operations
to be exported, (i) invoking ExternalAction.export() to
produce a set of stubs to perform the inter-context calls.

The stubs are constrained to implement an identical in-
terface to one implemented by the original, retaining throws
clauses for checked exceptions as well as the details of return
types and parameters.

5. IMPLEMENTATION EXPERIENCE

In this section we consider the use of external actions in pro-
viding a mechanism for managing exceptions (Section 5.1)
and for performing external 1/O operations (Section 5.2).

5.1 Propagating exceptions

The exception-propagation mechanism proposed in Section 2
can be implemented by a single external action that takes
the exception object created within the atomic block and
returns a deep copy of it created in the global context. The
definition of this action is simply:

51

static ObjectExternalAction promoteException =
new ObjectExternalAction() {
public Object action
(Context caller_context,
Serializable aae) {
return aae;
}
};

The actual copying of the exception object to the global
context is performed by the marshalling of the exception
object when promoteException is invoked. The design in
Figure 2 for implementing an atomic block using STM op-
erations is extended to propagate exceptions by adding an
exception handler of type AtomicAbortException and hav-
ing this promote the exception, abort the transaction and
then re-throw the copy the exception.

5.2 Performing I/O

1/0 operations are implemented using external actions to
perform any native method invocations necessary for the
I/O and using ContextListener call-backs to trigger re-
buffering of unused input (when aborting an input opera-
tion) or to trigger the actual output of buffered data (when
committing an output operation).

For example, when reading from standard input, an exter-
nal action is used to perform the read. It calls a native read
method from within the global context and buffers the value
read, again within the global context. In this case a context
listener is registered to re-buffer the data if the atomic block
is aborted, or to discard the buffer if the atomic block com-
pletes successfully.

We define a set of utility classes which simplify the imple-
mentation of abstractions such as the AtomicOutputStream
in Figure 5. These hold ordered collections of objects that
are buffered until an atomic block commits, and collections
of input items that have been received by an atomic block
and must be held for potential re-buffering in case the block
aborts.

Integration with external database transactions is not so
straightforward. We have built a prototype system based
on the Java Open Transaction Manager (JOTM)!, although
this relies on modifications to the JOTM implementation
rather than being made through the established Java Trans-
action API (JTA) [11]. The fundamental problem is that
both the STM and the JOTM system want to make the final
decision of whether or not to commit a set of operations; nei-
ther allows the other to perform a separate ‘prepare’ phase.
We chose to extend the JTA UserTransaction interface with
an additional prepare() operation. This issue would have
to be addressed more methodically in a full-strength imple-
mentation of our system.

6. RELATED WORK

This atomic construct builds on designs for Conditional
Critical Regions [7] and on the concurrency control features
of languages such as DP [2], Edison [3], Lynx [10] and Ar-
gus [8].

Stack-like memory usage disciplines have been investi-
gated in several other settings, most notably region-based
memory management [12]. Regions have been proposed as

"ttp://jotm.objectweb.org

an alternative or adjunct to traditional garbage collection,
allowing objects to be allocated within a stack of regions and
allowing space to be reclaimed by removing an entire region
from the top of the stack. Safety requires that references do
not occur from more permanent regions into less permanent
ones.

The Real-Time Specification for Java (RTSJ) [1] defines
a way of allocating objects within ‘scoped memory areas’
in order to allow storage reclamation without a run-time
garbage collector. Scoped memory areas must obey similar
constraints to the Context objects proposed here: objects
within one area may not refer to objects in less permanent
areas.

There are three main areas in which differences exist be-
tween our scheme, regions and scoped memory areas. The
first is in whether the prevention of illegal references is done
statically or dynamically: our system, as with conventional
region-based ones, takes the former approach whereas RTSJ
takes the latter. The second point of comparison is the direc-
tion in which contexts are entered: our system must support
transitions both from an outer context to an enclosed one
(by entering an atomic block) and from an enclosed con-
text to an outer one (by invoking an external action). The
final point is that the stack of Context objects in our sys-
tem should be viewed as ‘overlays’ on the same heap, with
objects at one layer being shadowed by objects at enclosed
layers, whereas the identities of objects in different regions
or scoped areas are considered distinct.

7. CONCLUSIONS AND FUTURE WORK

This paper has shown how we have extended our atomic
regions for concurrent Java programs to suppport explicit
abort operations and 1/0. The design presented here intro-
duces a notion of nested execution contexts and an abstrac-
tion for performing inter-context method calls. In this final
section we highlight a number of dead-ends we followed in
earlier designs (Section 7.1) and a number of extensions for
future work (Section 7.2).

7.1 Early dead-ends

Although these final abstractions are individually simple,
developing them has highlighted a number of problems which
we had not originally foreseen. These all relate to the need
to be careful about passing object references into a context
in which the initialisation of the objects’ fields will not have
been visible.

The original design we sketched proposed control methods
through which reads or writes could be performed outside
the current software transaction [5].

This approach is not safe with respect to the language-
based protection provided by Java: for example, final fields
are intended to be constant once initialised, but using these
methods a programmer could cause the initialisation to hap-
pen within a transactional context and subsequent accesses
to take place outside that context and therefore without the
initializations visible.

In subsequent designs we considered introducing a form
of ‘global action’ which would always execute in the global
context. As with our ultimate design for external actions,
these would be defined by instantiating an anonymous inner
class, for example:

52

atomic {
final String s = new String("Erroneous example");
GlobalAction g = new GlobalAction() {
public void doAction(Context caller_context) {
System.out.println ("s=" + s); /*P1x/
1}
g.doAction();
}

Unfortunately if P1 is exectued in the global context then
the initialization of the object s refers is not visible. Note
how our decision to execute external actions within the con-
text within which they are instantiated avoids this problem
without the need for dynamic checks. It also deals naturally
with the case of nested contexts.

7.2 Future work

Object finalizers still pose a problem: if an object is instan-
tiated in an atomic block and that block is subsequently
rolled back by an exception then should finalizer methods
be invoked on the objects that are lost? There appear to
be two options: the first is to consider the destruction of
the atomic block’s context to entirely undo the creation of
the objects and therefore to not run finalizers on them. The
second option is to execute the finalizers within the context
that the objects were instantiated — i.e. to execute them
just before destroying the context. These two options have
different behaviour if the finalizers loop or perform external
actions. We favour the first option because it is simpler to
implement and because it is consistent with the semantics
of Section 1.1.

The key direction for future work is evaluating the prac-
tical utility of the techniques that we have developed: we
have now considered atomic blocks with an armoury of fea-
tures, but we have not exercised these features in earnest in
a large system. It will also be instructive to see whether the
roll-back mechanisms triggered by AtomicAbortException
objects can simplify sequential programs by automating the
management of compensatory actions — this may be partic-
ularly useful when developing 1/O-processing code with a
wide variety of possible failure points.

A further point for future investigation will be the rela-
tionship between this work and the java.util.concurrent
library? anticipated in J2SE 1.5. For instance, once there
are benchmarks targeting JSR-166 features, then it will be
interesting to compare the implementation of collections and
queues built using atomic blocks with those built using the
virtual machine’s existing abstractions. We hope that our
work is an excellent counterpart to JSR-166 and that the
combination of well-engineered high-level abstractions and
an effective mechanism for extending them to provide ag-
gregate atomic operations may encourage more wide-scale
adoption of concurrency in applications.

7.3 Acknowledgments

This work has been supported by a donation from the Scal-
able Synchronization Research Group at Sun Labs Mas-
sachusetts.

2JSR-166, http://wuw.jcp.org/en/jsr/detail?id=166

8.
(1]

3]

[4]

[6]

8]

[10]

[11]

[12]

REFERENCES

BoLLELLA, G., BrROsGoL, B., DiBBLE, P., FURR, S.,
GOSLING, J., HARDIN, D., TURNBULL, M., AND
BELLIARDI, R. The Real-Time Specification for Java.
Addison Wesley, June 2000.

BRINCH HANSEN, P. Distributed processes: A
concurrent programming concept. Communications of
the ACM 21, 11 (Nov. 1978), 934-941.

BrINCH HANSEN, P. Edison — a multiprocessor
language. Software — Practice and Ezperience 11, 4
(Apr. 1981), 325-361.

CorMEN, T. H., LEISERSON, C. E.; AND RIVEST,

R. L. Introduction to Algorithms. MIT Press,
Cambridge, Mass., 1990.

HARRIS, T. Design choices for language-based
transactions. Tech. Rep. UCAM-CL-TR-572,
University of Cambridge, Computer Laboratory, Aug.
2003.

HaRrRrIs, T., AND FRASER, K. Language support for
lightweight transactions. In Object-Oriented
Programming, Systems, Langauges € Applications
(OOPSLA ’03) (Oct. 2003), pp. 388-402.

HoaRrg, C. A. R. Towards a theory of parallel
programming. In Operating Systems Techniques
(1972), vol. 9 of A.P.I.C. Studies in Data Processing,
pp. 61-71.

Liskov, B., AND SCHEIFLER, R. Guardians and
actions: linguistic aupport for robust, distributed
programs. ACM Transactions on Programming
Languages and Systems 5, 3 (July 1983), 381-404.
Conference Record of the Twenty-first Annual ACM
Symposium on Principles of Programming Languages
(Jan. 1994), ACM SIGPLAN Notices, ACM Press.
ScorT, M. L. Language support for loosely coupled
distributed programs. IEEE Transactions on Software
Engineering SE-13, 1 (Jan. 1987), 88-103.

SINGH, I., STEARNS, B., AND JOHNSON, M. Designing
enterprise applications with the J2EE platform,

2nd ed. Addison Wesley, 2002.

TorTE, M., AND TALPIN, J.-P. Region-based memory
management. Information and Computation (Feb.
1997). An earlier version of this was presented at [9].

53

Transactional Lock-Free Objects for Real-time Java

F. Pizlo M. Prochazka S. Jagannathan J. Vitek
Purdue University

ABSTRACT

Priority inversion is an important concern in providing ro-
bust synchronization in real-time systems. When a high-
priority task attempts to acquire a lock held by a low pri-
ority task, it is often necessary to momentarily resume the
execution of the low priority task so as to allow it to leave the
critical region safely, ensuring that shared resources are not
in an inconsistent state. Once these resources are properly
released, the high priority task can proceed. In patholog-
ical cases, the priority of several threads may have to be
increased, and the high priority tasks can experience un-
bounded delays.

An alternative approach would record the original values of
shared objects whenever they are modified, restoring them
if the executing thread is interrupted by a higher-priority
one. This approach thus treats the critical section as a
lightweight transaction. This paper presents an extension
to the Real-time Specification for Java with transactional
lock-free (TLF) objects. Atomic methods of TLF-objects
can be accessed concurrently without risking priority inver-
sion. The semantics of our transactions are such that a
high-priority thread will always succeed when trying to en-
ter an atomic section. The time to enter is bounded by
the number of locations updated within the atomic section.
Experimental results undertaken in the context of Ovm, a
virtual machine framework for Java that implements the
Real-Time Specification for Java, indicates that transac-
tional lock-free objects can improve the responsiveness of
high priority threads compared to priority-inheritance based
approaches at the cost of a reduction throughput.

1. INTRODUCTION

The Real-Time Specification for Java (RT'SJ) [6] holds pro-
mise to play a key role in the construction of real-time sys-
tems in a type-safe, high-level, programming language. The
RTSJ is being evaluated for use in mission-critical systems
by the likes of Boeing [24] and JPL [18], and has one high-
quality commercial implementation [14], as well as a number
of open source incarnations [4, 8] and variants [19, 7, 30, 9,
27]. This paper focuses on the RT'SJ programming model,
and in particular, on how to write correct and efficient real-
time code in the presence of priority preemptive threads and
mutual exclusion.

Priority inversion is a well-studied problem in concurrent
real-time programming. Avoiding priority inversion is es-
pecially important in mission critical or real-time applica-

54

tions [17, 10, 22, 23]. Priority inheritance and priority ceil-
ing emulation are two well-known protocols that attempt
to avoid priority inversion. The priority ceiling emulation
(PCE) technique raises the priority of any locking thread to
the highest priority of any thread that ever uses that lock
(i.e., its priority ceiling). This requires the programmer to
supply the priority ceiling for each lock. In contrast, the
priority inheritance protocol (PIP) will raise the priority of
a thread only when holding a lock causes it to block a higher
priority thread. When this happens, the low priority thread
inherits the priority of the higher priority thread it is block-
ing. Yet another alternative is to have privileged threads, for
example those executing on behalf of the operating system.
These threads can often disable interrupts or preemption
that effectively locks lower-priority threads from acquiring
critical resources. Regardless of the approach, once a thread
enters a synchronized section its locks cannot be summarily
relinquished without potentially violating synchronization
invariants.

Even with a priority inversion avoidance protocol a high-
level thread can experience an unbounded delay if a low pri-
ority thread’s does not relinquish its lock, or, in less extreme
cases, if it takes longer than planned to complete its work.
While this situation may be described as a programming
error, it is nevertheless a case that can occur, especially in
large and complex embedded software such as those found
in avionics systems.

The RTSJ supports priority preemptive threads with a min-
imum of 28 unique priorities. Furthermore, it provides,
by default, an implementation of a priority inheritance al-
gorithm and supports priority ceiling emulation. Priority
inheritance may be transitive since a low-priority thread
may try to acquire resources held by an even lower prior-
ity threads. In the RTSJ, application programmers are also
faced with the additional problem that some low-priority
whose priority is boosted may trigger a garbage collection,
effectively blocking the high-priority thread from executing
for the entire duration of the collection.

We propose to investigate an alternative concurrency control
mechanism based on transactional lock-free (TLF) objects.
In this scheme, concurrency control is implemented by crit-
ical sections which provide atomicity via a simple compiler-
assisted transactional mechanism. Whenever a high priority
thread tries to enter an atomic method of a TLF-object, the
operation always succeeds in time bounded by the number
of objects updated in the method. Any lower priority thread

executing within an atomic method will be evicted, and its
changes undone. The lower priority thread is guaranteed to
be reexecuted when the high priority thread completes its
work. Since the overheads to perform rollbacks are charged
only to low-priority threads, our scheme favors responsive-
ness over throughput.

This paper defines the semantics of TLF-objects and de-
scribes their implementation within a real-time Java virtual
machine. The salient features of our proposal are as follows:

e A simple programming model in which priority inver-
sion can not occur and higher priority threads are guar-
anteed to enter critical sections within a bounded num-
ber of steps.

e [Integration with the RTSJ in a backwards compatible
way. No changes to the Java language are required, we
introduce annotations that are interpreted by the VM.
Our proposal can coexist with traditional synchroniza-
tion.

e [Efficient implementation which required modest changes

to an existing RT'SJ virtual machine and its optimizing
compiler.

Transactional extensions to programming languages have re-
ceived renewed attention of late. This work is closely related
to that of Harris [11] and Welc et.al. [32]. The main differ-
ence between our work and theirs, besides choice of imple-
mentation technique, is that we must ensure that space for
a transaction is bounded.

The paper is organized as follows. We begin with an overview
of relevant features of the Real-time Specification for Java.
Section 3 introduces transactional lock-free objects. Sec-
tion 4 describes the implementation of TLF-objects within
Ovm. Section 5 reports on experimental results.

2. REAL-TIME SPECIFICATION FOR JAVA

We overview the salient features of the Real-time Specifica-
tion for Java (RTSJ). The RTSJ extends Java with support
for real-time programming in a backward compatible way.
The RTSJ requires no changes to syntax of Java and allow
real-time and plain Java codes to co-exist in one virtual ma-
chine. One design choice made in the RTSJ is to extend
the Java programming model with two abstractions: (a) re-
gions of memory, called scoped memory areas, which are not
subject to garbage collection, and (b) real-time threads that
never interact with the heap and thus can never interfere
with, or be affected by, the garbage collector. Technically
real-time threads come in two flavors, RealtimeThread and
NoHeapRealtimeThread, and only the latter is guaranteed
not to experience garbage collection pauses. Both kinds of
threads can be created with any of the 28 priorities over
and above the ten priorities defined in standard Java and be
given scheduling parameters that are either periodic, aperi-
odic, or sporadic.

Priority inversion is avoided by defining monitor control poli-
cies. The RTSJ overloads the meaning of the synchronized
keyword by allowing programmers to specify a monitor con-
trol policy for each Java language monitor. Two policy

95

classes are provided by default: PriorityInheritance and
PriorityCeilingEmulation that implement the familiar no-
tions of priority inheritance and priority ceiling respectively.
The static method MonitorControl.setMonitorControl (p)
can be used to set the default policy for the entire virtual
machine, which setMonitorControl (target, policy) sets
the policy for a single object, target.

3. TRANSACTIONAL LOCK-FREE OBJECTS

An alternative approach to the above mentioned priority in-
version avoidance schemes is to use lightweight transactions
instead of monitors to control access to critical sections.
For example, one can apply optimistic concurrency seman-
tics [31] to any number of concurrently executing tasks, al-
lowing these tasks to simultaneously enter the same critical
section (i.e. a sequence of operations protected by the same
lock). If the operations performed by these tasks do not con-
flict they will be allowed to commit their changes, making
their updates visible to other threads in the program; oth-
erwise, one or more task will be aborted, and their changes
discarded. An aborted task may retry execution.

Our approach can be viewed as a hybrid transactional model
that combines features of both pessimistic and optimistic
concurrency semantics in a manner suited to real-time sys-
tems. As in a pessimistic concurrency control model, only
one thread is allowed to execute within a TLF-object at
any given point. As in an optimistic concurrency control
model, a thread can be aborted while executing within a
TLF-object, if a higher-priority thread requests access to
the same object. As in these other approaches, state in-
formation is logged by each thread to ensure that when an
abort does occur, updates it has performed can be reverted
to ensure that consistency invariants are not violated.

We propose a simple language extension inspired by the
work of Harris and Fraser [11] and Welc et.al. [32] geared to-
wards priority preemptive real-time systems. We introduce
a single new keyword @atomic used to declare transactional
critical sections:

@atomic void update(int i) {
if (i > this.field)
this.field = i;

}

All writes performed within the method, and the methods it
invokes, are guaranteed to become visible when the current
thread leaves the critical section. In the case a transaction is
aborted all changes performed by the thread within the syn-
chronized region are undone and the method is re-excuted.

We refer to objects with @atomic methods as transactional
lock-free (TLF) objects'. A TLF-object acts as a monitor
with respect to its atomic methods. There can be only one
thread concurrently executing an atomic method of a given

!Anderson et.al. have proposed lock-free shared objects
in [2]. The main difference between our works is that we
provide a language-based solution, so none the operations
performed by an aborted thread can be witnessed by other
threads. This is not the case in Anderson’s work where only
the transactional object is protected, shared variables may
be modified by an aborted thread and these will not be un-
done.

boost priority

Update
H o -
Read
" o2 o]
Critical
section
L 02
0 1 2 3 4 5 6 7 8 9

Fig. 1: A sequence of actions performed by dif-
ferent priority threads under priority inheritance
trying to enter critical sections guarded by the
same lock. Low priority thread L is released at
time step 0, mid priority thread M is released
at time 2, and high priority thread is released at
time step 3. L and M operate with boosted pri-
orities at time steps 5 and 6, respectively. The
execution of H’s critical section is delayed until
time step 6.

TLF-object. We ensure that a thread is allowed to enter a
critical section, only if the TLF-object protecting it is not
currently being accessed, or if the TLF object is currently
owned by a lower priority thread. In the latter case the
lower priority thread is evicted from the critical section, its
changes are undone, and it is permitted to re-execute when-
ever the high priority thread completes its work.

Fig. 2 illustrates the actions undertaken by different threads
when they share access to a critical section defined as a
transactional object. At time step 0, a low-priority thread
transactionally executes regions of code that updates object
02 (which is not necessarily the transactional object but can
be any object visible to that thread). Before it completes
execution of its transaction, the thread is interrupted by a
medium-priority thread causing the modification to 02 to
be undone (time step 2). Before the medium priority thread
is allowed to execute its transaction, it is interrupted itself
by a high priority thread which transactionally updates 02.
Once the high priority completes its work the medium pri-
ority thread is allowed to proceed (time step 5). Finally the
low-priority thread regains control and completes its work
(time step 7 to 9). Note that the low-priority thread must
reexecute its actions Thus, when a lower-priority thread is
evicted, it must resume execution from the beginning of the
critical section; no intermediate results from its previous
aborted execution are preserved.

In contrast, Fig. 1 shows a comparable scenario using a
priority-inversion avoidance protocol. In this case, the in-
terruption of the low-priority thread L by medium-priority
thread M at time step 2 is allowed because M does not im-
mediately enter the critical section. Thread H preempts M
at time step 3, in order to get to execute The priority of L is
boosted at time step 4 and M at time step 5. With a protocol
such as priority inheritance, the maximum time that H must
wait before it can begin execution within the critical section
is only bounded if the length of individual critical sections
can be bounded. In contrast, TLF-objects bound the time
that a higher-priority thread must wait to enter a critical

56

undo

M 02 ¢ O1

Fig. 2: A sequence of actions performed by differ-
ent priority threads sharing under transactional
semantics. Threads M is released at time step
2, causing thread L to abort and undo its write.
Thread H is released at time step 3, preempting
M. Thread L is reexecuted at time step 7. No-
tice that in this example transaction reduce over-
all throughput but increase responsiveness of the
high priority thread.

section as a function of the number of updates that must
be undone. Since undoing the effects of an update involves
simply restoring the original value of the object at the time
the transaction was entered, this cost is significantly easier
to calculate and predict than the worst case execution time
(WCET) of critical sections®. The cost of transaction is that
overall throughput is reduced due to the cost of undoing and
reexecuting threads.

3.1 Example

Consider the doubly linked list data type, DLList, defined in
Fig. 3. The class has two atomic methods, insert () which
performs ordered insertion and getMax() which returns the
list’s largest value. An auxiliary method, splice(), inserts
a new cell in a list. A program with two threads, a high
priority thread H and a low priority L, which interact via a
shared DLList object is given next (the actions performed by
each thread are shown, the indentation hints at the relative
start times):

L: shared.insert(obj)
H: shared.getMax ()

Assume L is scheduled first, it acquires the shared TLF-
object, enters the critical section and start executing the
insertion code. If H is scheduled before L completes, the VM
will notice that shared has been acquired by another thread.
By definition of a priority preemptive system, the priority
of L. must be less than the H. This leaves no ambiguity as
to what must happen next. L is aborted; if it has already
performed some of its updates, they are undone and H is
permitted to enter the critical section. Once H completes its
work, L will be rescheduled and will re-execute the call to
insert().

In this example the cost aborting a call of insert () is bounded

2Practitioners still estimate WCETs by empirical means,
running the program on different inputs and measuring ex-
ecution time.

class DLList {

Comparable value;
DLList prev, next;

@atomic DLList insert(Comparable v) {

DLList cur = this, pre = null;
while (cur != null && v.gte(cur.value))
{ pre = cur; cur = cur.next; }
if (pre == null)
return new DDList(value).splice(this);
else {
pre.splice(new DDList(value));
return this;

}

DLList splice(DLList after) {

DLList tmp = this.next;
this.next = after;
after.next = tmp;
after.prev = this;
return this;

}

@atomic Comparable getMax() {

Comparable max = this.value;

DLList cur = this;

while (cur != null) {
if (max.lte(cur.value)) max = cur.value;
cur = cur.next;

}

return max;

Fig. 3: TLF-object example. insert() performs an
ordered insertion in the list. Calls to insert start
a new transaction which protects the internal call
to splice() ensuring that all updates are logged. If
the transaction completes changes become visible,
otherwise they are undone. The latency of calls to
insert() are bounded by the cost of restoring the
three cells updated within splice().

by the cost of undoing writes to three DLList objects, while
aborting getMax () incurs no extra cost.

The semantics of @atomic methods are such that the original
values of all objects updated within the method, or methods
called from it, are logged including objects of other types.
Thus the call to splice() is also protected by the trans-
action initiated in insert(). Just as with Java synchro-
nization, calling an unprotected method (such as splice())
directly from another thread may reveal inconsistent state.
For instance, consider the following program:

L shared.insert(obj)
M: shared.splice(cell)
H: shared.insert(obj)

If a medium priority thread is released while L is within its
critical section, it may observes values modified by L. If H
is called before L completes the transaction may be aborted
and the values observed by M become stale.

3.2 Semantics

The semantics of TLF have been designed to suit the re-
quirements of RTSJ; in particular we have tried to bal-

57

ance expressiveness of the programming model with space
and time efficiency concerns. TLF-objects are based on a
flat non-nested transactional model. Whenever a real-time
thread T invokes a method annotated with the @atomic key-
word on an object tobj, an implementation is required to
checked if the tobj is currently owned by another thread. If
it is the case the other thread is aborted and the ownership
field of tobj is cleared. Thread T then acquires ownership of
tobj and begins executing. When T ezits from the critical
section, all changes it made are finalized and ownership of
tobj is reset. A thread may exit a critical section normally,
when the method returns, or exceptionally, by throwing an
exception from the method. In both cases all changes made
by the thread will be finalized.

The original values of all objects updated by a thread be-
tween the time a TLF-object is acquired and the critical
section is exited are recorded in a log to ensure state con-
sistency if the thread is interrupted prior to its exit of the
section. An implementation is required to allocate space
for logs at virtual machine start up before any real-time
thread are started. To support both plain real-time threads
and NoHeapRealtimeThreads, logs are allocated in immortal
memory. The logging policy is implementation dependent —
the only requirement is that space required by the log be
bounded. Since we log the original value of an object the
first time it is updated, each modified object must be logged
at most once. It is permissible to log partial objects. Loca-
tions in an array may be logged at most once per write to
the location.

An implementation is only required to ensure that objects
are in a consistent state when a thread exits its critical sec-
tion. Attempts to access objects being modified are unchecked
programming errors as they may yield stale value of these
objects.

Aborted transactions are automatically re-executed. The
process is transparent to the application. A thread is neither
able observe that a transaction was re-executed nor allowed
to explicitly trigger an abort.

Code Constraints. An implementation is allowed to
reject any @atomic method that may perform blocking op-
erations. This can be validated by an off-line static anal-
ysis of real-time code. The analysis only needs to classify
methods as, either, safe or unsafe. A method is safe if it
does not contain synchronized statements. Moreover, safe
methods cannot include calls to native methods since such
methods can perform blocking operations. In practice, na-
tive methods are inspected manually, and declared safe on a
case-by-case basis. For the same reason, safe methods can-
not make reflective calls, or refer to classes that cannot be
statically guaranteed to be available and initialized®. Fi-
nally, a method is safe if all methods called in its body can
be proved safe.

3(Class initialization is an issue for RTSJ programs. Java se-
mantics mandate classes to be loaded and initialized lazily,
but to obtain any measure of predictability a RTSJ-virtual
machine will likely load all classes agressively and initial-
ize them ahead of time. Reflection can potentially refer to
classes that have not yet been loaded and must be used
carefully.

Space Bounds. The upper bound of the log size is user-
specified. As the layout of objects and the logging policy
are implementation dependent, space requirements are esti-
mated based on the maximum number of objects that can
be modified in a critical section. For arrays the number used
is that of writes to individual locations. The RTSJ provide a
class for this purpose called SizeEstimator?; we extend this
notion to bound transactional object memory requirements
TLFSizeEstimator.

class TLFSizeEstimator extends SizeEstimator {

TLFSizeEstimator(Method m);
void reserve(Class c, int count);
void reserveArray(Class c, int count);

}

Each atomic method has an associated estimator. The space
required to log the changes performed in the method is de-
clared by calling the reserve() and reserveArray() meth-
ods. reserve(C, i) sets aside space to log i instances of
class C. reserveArray(A, i) sets aside space to log i writes
to an array of type A. Once the estimator is complete, it
must be registered with the VM using registerAtomic()
method. The following code fragment register estimators
for the methods of Fig. 3.

tins = new TLFSizeEstimator(dllist_insert_method);
tins.reserve(DLList.class, 3);
OVM.registerAtomic(tins);

tmax = new TLFSizeEstimator(dllist_getmax_method);
OVM.registerAtomic(tmax);

The insert() method may update three objects of class
DLList, while the getMax () method performs no updates.

3.3 Discussion

The design of TLF-objects is fully backwards compatible
with the RTSJ. Plain RT'SJ code can execute on virtual ma-
chine supporting TLF-objects. Indeed, programs can use
a mixture of TLF and traditional synchronization. The
@atomic keyword does not require change to Java syntax;
it is an annotation consistent with the JSR-175 Metadata
extensions to Java. The keyword can also be replaced by a
marker exception®.

The transactional model adopted here could be relaxed at
some cost in complexity and perfomance. For example,
providing support for nested transactions would mean that
aborting the execution of one atomic method may lead to a
cascade of aborts to undo the effects of other atomic meth-
ods. Logging operations become more complex as a trans-
action must maintain one log per nested transaction to sup-
port nested aborts. This implies that the same object may
appear in the log of several transactions. Furthermore, the
cost of write barriers increases as it is necessary to check in
which transaction’s log the object has been stored.

A more modest change would entail recursive atomic sec-
tions, i.e. allowing a thread to call atomic methods on an
object if it already has acquired that object. In the example
of Fig. 3, this would allow method splice() to be declared

4In the RTSJ size estimators are used to set bounds on the
size of memory regions.

5Marker exceptions are well known idiom, the declara-
tion @atomic void £() {...} becomes void £() throws
Atomic {...}.

58

atomic. The drawback of this change to the semantics is
that some extra checks have to be performed when a thread
enters and leaves a critical section, and that it is more dif-
ficult to check statically if a method is safe. Furthermore,
there would be additional runtime exceptions if a transac-
tion tried to acquire a different object.

Extending our semantics to support a full optimistic trans-
actional model would increase throughput as more than one
thread may execute in the same critical section, but would
also increase the cost of exiting the region as it would be nec-
essary to check that no conflict on shared state has occured,
and would also increase the program’s space requirements
as multiple logs for the same object have to be maintained
at the same time.

4. OVM IMPLEMENTATION

TLF-objects have been implemented in the RTSJ configu-
ration of the Ovm virtual machine framework. Ovm is an
open source framework for building language runtimes. The
framework contains more than 150K lines of code and over
2000 classes, including an interpreter, a just-in-time com-
piler and an ahead-of-time compiler. These components can
be specialized and assembled into an Ovm configuration cus-
tomized for a particular problem domain. The RTSJ con-
figuration yields a virtual machine implementing the Real-
time Specification for Java. This configuration compiles
real-time Java code ahead of time and has a fast user-level
threading system based on compiler inserted polling code.
The platforms currently supported are x86/RTLinux and
PPC/MacOSX. The ahead-of-time compiler produces code
competitive with Sun’s HotSpot virtual machine.

The main design decision taken in the Ovm implementation
of TLF-objects is to limit number of concurrent transactions
inorder to reduce space requirements and permit a more ef-
ficient implementation. Our implementation restricts appli-
cations to have at most one executing transaction at any
given instant. We believe this restriction to be acceptable
in practice as we are targeting system with relatively small
numbers of threads and where transactional sections are
short.

The layout of object, described by their object header, is
modified with an extra bit that indicates whether the object
has been logged by the current transaction.

The implementation of the basic transactional primitives is
described in Fig. 4. When a thread attempts to enter an
atomic section, it must check that no other transaction is
executing. The VM maintains a reference to the current
thread within a critical section in VM. currentTransaction.
If there is an ongoing transaction executing on behalf of
another thread, it is immediately aborted. Note that the
thread executing within the section must have lower-priority
in order for the thread performing the acquire operation to
be executing. In any case, the transaction ownership field is
set to the new thread and the acquisition succeeds. Exiting
a critical section, requires clearing all the stamp fields of all
logged objects as well as the currentTransaction field. Ev-
ery write to an object is protected by a barrier. We extend
the existing barrier code (which enforces scoped memory se-
mantics) to log the object if a transaction is active and the

acquire (thread)

owner <« VM.currentTransaction
if owner # null

abort (owner)
VM. currentTransaction «— thread

exit ()

foreach o in VM.currentLog
o.stamp « false

clearLog()

VM. currentTransaction < null

write (o)

if VM.currentTransaction # null A o.stamp = false
log(o)

log (o)

log < VM.currentLog
if log.length + sizeof(object) + 2 < log.size

throw logOverflowError

addToLog(log, object, sizeof(object))
o.stamp «— true

abort(thread)
foreach (addr, i, size) in VM.currentlog

copy(addr, 0, log, i, size)
clearLog()

thread.postAbortedTransactionException()

Fig. 4: Pseudo code for the basic transactional primitives in the Ovm implementation.

object’s stamp is not set. The log records triples that con-
sist of the object’s address, size, and contents. An object
is first added into the log before setting it’s stamp field to
true. In case the size of the log was misspredicted an ex-
ception is thrown. As this signals a programming error, the
transaction will not be re-executed automatically. The error
propagates into user code, and if not caught will terminate
the current task. A transaction is aborted by rolling back
the changes it performed and posting an aborted exception
so that whenever the thread is sheduled next it recieve the
exception which has the effect of unrolling the stack out of
the critical section.

Finally, we show the translation of an atomic method, a
method such as:

@atomic void method() {
...body

is transformed by the ahead-of-time compiler into

void method() throw PragmaNoPollcheck {
while (true) {
try {
acquire(currentThread);
rawmethod(); }
catch (AbortedTransactionException _) { continue; }
catch (Throwable t) { exit(); throw t; }
exit();
break; }

In Ovm the PragmaNoPollcheck exception is a marker that
instructs the compiler not to emit pollchecking code within
the body of the translated method, thus ensuring that all
transactional operation are executed atomically®.

Note that in our implementation this translation is per-
formed transparently within the virtual machine, in par-
ticular we do not change the signature of the method. Fur-
thermore operations such as abort () are Ovm internal and
not part of any Java level API.

5Poll checks are normally inserted at all potentially recursive
method entry, and in loops. Their role is to check if a thread
should yield.

59

5. EXPERIMENTAL RESULTS

To quantify the performance of TLF compared to priority
inheritance, Figs. 5 and 6 shows the maximum execution
time for high and low priority threads executing the list
insertion microbenchmark described in Section 3.17. The
benchmark was executed on a 1.66 GHz Athlon, with 1 GB
memory in single-user mode. The results were gathered by
running the benchmark 7 times, discarding the first run.

The x-axis indicates the size of the list, and the y-axis mesures
the maximum time necessary (in microseconds) to insert an

object at each position in the list 100 times; each insertion

causes the tail of the list following the insertion point to be

extended to hold the new item. The lower priority thread

inserts repeatedly, while the high priority thread is a pe-

riodic thread running under a 10ms period, that inserts a

single value 100 times.

As the figure shows, the maximum execution time for higher
priority threads under a TLF scheme is roughly a factor of 3
faster than a scheme using PIP, and is effectively the same
as a scheme in which no synchronization is used to medi-
ate access to the list. This is because the a relatively small
amount of data is logged — when a thread enters the section,
it needs to only record the current list element being mod-
ified. This is a three word object that contains the current
value, a reference to the previous element, and a reference to
the next element. If the lower priority thread is aborted, we
need only revert the list by restoring this object. Note that
maximum execution time for TLF does not increase linearly
as the size of the list grows, unlikely the priority inheritance
scheme, since the lower priority thread is evicted immedi-
ately; using priority inheritance, the wait time for a high
priority thread is related to the amount of work remaining
in the critical section that must be completed by the lower
priority thread.

As expected, the maximum execution time for lower prior-
ity threads under TLF is worse than under a PIP scheme
since such threads must reexecute their critical section in its
entirety once they are aborted. However, the cost of reex-

"To quantify Ovm’s code generation quality, the non-
synchronized version of this benchmark runs roughly 10%
slower than the same program in Sun’s Hotspot VM.

2000

1500

1000

Fig. 5: Responsiveness. Maximum execution times for a high-priority
thread with synchronization (Sync), TLF-objects (TLF), and no concur-
rency control (Raw).

2000

1500

Sync

1000

—TLF

Raw

500

Fig. 6: Responsiveness. Maximum execution times for a low-priority
thread with synchronization (Sync), TLF-objects (TLF), and no concur-
rency control (Raw).

60

ecution is small compared to the improved throughput for
higher priority threads. Of course, changing the periodicity
rate of higher priority threads may influence the shape of
this graph; a higher-rate would imply low priority threads
do less useful work and reexecute more frequently.

6. RELATED WORK

Our use of rollbacks to redo computation inside synchro-
nized sections as a result of an undesirable scheduling is
reminiscent of optimistic concurrency protocols first intro-
duced in the 1980’s [16] to improve database performance.
Given a collection of transactions, the goal in an optimistic
concurrency implementation is to ensure that only a seri-
alizable schedule results [1, 12, 5]. An analysis of the ap-
plicability of lock-free objects in hard realtime systems is
described by Anderson et.al. [3]. Their focus is on defining
schedules that guarantee tight bounds on the number of re-
tries a thread may execute a critical section in the presence
of higher-priority threads competing for the same resource.
Transactional extensions of the priority ceiling protocol are
studied in [26, 29], where a task with its priority higher then
a given abort ceiling can abort the currently scheduled task.

Transactional lock-free objects have been presented in [2].
The emphasis of that work is to provide language indepen-
dent support for transactional operations. This means that
atomicity and isolation guarantees are limited to the trans-
actional objects. In this paper we give a stronger guarantee,
actions of a thread within a transactional section are only
observable if the thread commits. The difference is that
transaction do not only protect the transactional object but
also all other objects that can be reached by following chains
of references accessible to thread performing a transaction.
This means that we ensure that the programmer will not
be able to observe that a thread was reexecuted. A formal
semantics for language-level transactions appeared in [31],
interested readers are referred to that paper for a discussion
of correctness.

Applying these techniques to a broader setting, researchers
have also investigated lock-free objects [15, 28, 25]. Our use
of logging writes inside synchronized sections distinguishes
our approach from lock-free structures because synchronized
sections serve as a protection mechanism for multiple (dis-
tinct) reads and writes. Conceptually, within its dynamic
context, the original values of shared objects are logged and
can be reverted if the section aborts. More recently, Her-
lihy et.al. describe a software transactional memory ab-
straction [13] for Java that allow transactional objects to be
dynamically created. Harris and Fraser [11] also describe
a lightweight transactional model for Java. Both these ef-
forts share similar goals to ours, but differ in the semantics
and implementations of the primitives chosen, and in the
application domains addressed. Related efforts at providing
hardware support for lock-free execution has been described
by Rajwar and Goodman [20] and Rajwar looked at hard-
ware assisted transactional memory [20, 21]

61

7. CONCLUSION

We have presented a mechanism that addresses the issue of
effective scheduling of high-priority threads in priority pre-
emptive realtime systems by introducing lightweight trans-
actional regions that log objects accessed by a thread, and
restores the contents of these logs when a thread are inter-
rupted by a higher-priority ones. We show that the time to
revert control to higher-priority threads can be bounded to
be a function of the size of the transaction-maintained log,
and the overheads to maintain transactional consistency is
small both in space and time. The model is simple, requir-
ing no major change in programming style or methodology,
and is general, applicable to any RTSJ program. Perfor-
mance results indicate that this scheme significantly outper-
forms lock-based and priority-inheritance based approaches
in terms of responsiveness for high-priority threads.

Our design deliberately trades-off flexibility and generality
for simplicity. Effectively dealing with nested transactions,
allowing multiple transactional regions to execute concur-
rently, and reducing the amount of programmer intervention
necessary to specity log sizes are several important exten-
sions we hope to pursue.

8. REFERENCES

[1] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh
Maheshwari. Efficient optimistic concurrency control using
loosely synchronized clocks. In sigmod, pages 23—-34, 1995.

[2] James Anderson, Srikanth Ramamurthy, Mark Moir, and
Kevin Jeffay. Lock-free transactions for real-time systems.
In Real-Time Database Systems: Issues and Applications.
Kluwer Academic Publishers, Norwell, Massachusetts, 1997.

James H. Anderson, Srikanth Ramamurthy, and Kevin
Jeffay. Real-time computing with lock-free shared objects.
ACM Transactions on Computer Systems, 15(2):134-165,
May 1997.

William S. Beebee, Jr. and Martin Rinard. An
implementation of scoped memory for real-time Java.
Emsoft - LNCS, 2211, 2001.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan
Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[6] Greg Bollella, James Gosling, Benjamin Brosgol, Peter
Dibble, Steve Furr, and Mark Turnbull. The Real-Time
Specification for Java. Java Series. Addison-Wesley, June
2000.
www.javaseries.com/rtj.pdf.

3

[4

[5

[7

Dries Buytaert, Frans Arickx, and Johan Vos. A profiler
and compiler for the Wonka Virtual Machine. In USENIX
JVM’02 Work in Progress, San Francisco, CA, August
2002.

Angelo Corsaro and Doug Schmidt. The design and
performace of the jRate Real-Time Java implementation. In
The 4th International Symposium on Distributed Objects
and Applications (DOA’02), 2002.

Urs Gleim. JaRTS: A portable implementation of real-time
core extensions for Java. In Proceedings of the Java Virtual
Machine Research and Technology Symposium (JVM ’02):
August 1-2, 2002, San Francisco, California, US, Berkeley,
CA, USA, 2002. USENIX.

[10] John B. Goodenough and Lui Sha. The priority ceiling
protocol: A method for minimizing the blocking of high
priority Ada tasks. ACM SIGADA Ada Letters, 8(7):20-31,
Fall 1988.

[11] Tim Harris and Keir Fraser. Language support for
lightweight transactions. ACM SIGPLAN Notices,
38(11):388-402, November 2003.

B

[9

(12]

(13]

(14]

(15]

[16]

(17]

(18]
19]

20]

(21]

(22]

(23]

[24]

25]

[26]

27]

28]

Maurice Herlihy. Apologizing versus asking permission:
Optimistic concurrency control for abstract data types.
ACM Transactions on Database Systems, 15(1):96-124,
1990.

Maurice Herlihy, Victor Luchangco, Mark Moir, and
William N. Scherer, III. Software transactional memory for
dynamic-sized data structures. In ACM Conference on
Principles of Distributed Computing, pages 92—101, 2003.

Timesys Inc. jTime, 2003.
http://wuw.timesys.com.

E. H. Jensen, G. W. Hagensen, and J. M. Broughton. A
new approach to exclusive data access in shared memory
multiprocessors. Technical report, Lawrence Livermore
National Laboratories, 1987.

H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database
Systems, 9(4):213-226, June 1981.

Douglass Locke, Lui Sha, Ragunathan Rajkumar, John
Lehoczky, and Greg Burns. Priority inversion and its
control: An experimental investigation. ACM SIGADA
Ada Letters, 8(7):39-42, Fall 1988.

NASA/JPL and Sun. Golden gate, 2003.
http://research.sun.com/projects/goldengate.

Kelvin Nilsen. Adding real-time capabilities to Java.
Communications of the ACM, 41(6):49-56, June 1998.

Ravi Rajwar and James R. Goodman. Speculative lock
elision: Enabling highly concurrent multithreaded
execution. In Proceedings of the 34th Annual International
Symposium on Microarchitecture, pages 294-305, Austin,
Texas, December 1-5, 2001. IEEE Computer Society
TC-MICRO and ACM SIGMICRO.

Ravi Rajwar and James R. Goodman. Transactional
lock-free execution of lock-based programs. In Cindy Norris
and Jr. James B. Fenwick, editors, Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-X), volume 37, 10 of ACM SIGPLAN notices,
pages 5—17, New York, October 5-9 2002. ACM Press.

Douglas C. Schmidt, Sumedh Mungee, Sergio
Flores-Gaitan, and Aniruddha S. Gokhale. Alleviating
priority inversion and non-determinism in real-time
CORBA ORB core architectures. In IEEE Real Time
Technology and Applications Symposium, pages 92—101,
1998.

Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky.
Priority inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers,
29(9):1175-1185, September 1990.

David Sharp. Real-time distributed object computing:
Ready for mission-critical embedded system applications.
In Proceeding of the Third International Symposium on
Distribtued-Objects and Applications (DOA’01), 2001.

Nir Shavit and Dan Touitou. Software transactional
memory. In Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Computing
(PODC ’95), pages 204-213, New York, August 1995.
ACM.

LihChyun Shu, Michal young, and Ragunathan Rajkumar.
An abort ceiling protocol for controlling priority inversion.
In Proceedings of the First Worskhop on Real-Time
Computing and Applications (RTCSA), pages 202—-206,
1994.

Fridtjof Siebert. Hard real-time garbage collection in the
Jamaica Virtual Machine. In Sixth International
Conference on Real-Time Computing Systems and
Applications (RTCSA’99), Hong Kong, 1999.

R.L. Sites. Alpha Architecture Reference Manual. Digital,
1992.

62

(29]

(30]

(31]

(32]

Hiroaki Takada and Ken Sakamura. Real-time
synchronization protocols with abortable critical sections.
In Proceedings of the First Worskhop on Real-Time
Computing and Applications (RTCSA), pages 4852, 1994.

Jorgen Tryggvesson, Torbjorn Mattsson, and Hansruedi
Heeb. Jbed: Java for real-time systems. Dr. Dobb’s Journal
of Software Tools, 24(11):78, 80, 82-84, 86, November 1999.

Jan Vitek, Suresh Jagannathan, Adam Welc, and
Antony L. Hosking. A Semantic Framework for Designer
Transactions. In Proceedings of the European Symposium
on Programming, March 2004.

Adam Welc, Antony L. Hosking, and Suresh Jagannathan.
Transactional Monitors for Concurrent Objects. In
Proceedings of the European Conference on
Object-Oriented Programming (ECOOP’0/), June 2004.

Snapshots and Software Transactional Memory

Christopher Cole
Northrop Grumman Corporation

chris.cole@ngc.com

ABSTRACT

One way that software transactional memory implementa-

tions attempt to reduce synchronization conflicts among trans-

actions is by supporting different kinds of access modes.
One such implementation, Dynamic Software Transactional
Memory (DSTM), supports three kinds of memory access:
WRITE mode, which allows an object to be observed and
modified, READ mode, which allows an object to be ob-
served but not modified, and TEMP mode, which allows an
object to be observed for a limited duration.

In this paper, we examine the relative performance of
these modes for simple benchmarks on a small-scale mul-
tiprocessor. We find that on this platform and for these
benchmarks, the READ and TEMP mode implementations
do not substantially increase transaction throughput (and
sometimes reduce it). We blame the extra bookkeeping in-
herent in these modes.

In response, we propose a new SNAP access mode. This
mode provides almost the same behavior as TEMP mode,
but admits much more efficient implementations.

1. INTRODUCTION

Dynamic Software Transactional Memory (DSTM) [7] is
an application programming interface for concurrent compu-
tations in which shared data is synchronized without using
locks. DSTM manages a collection of transactional objects,
which are accessed by transactions. A transaction is a short-
lived, single-threaded computation that either commits or
aborts. If the transaction commits, then these changes take
effect; otherwise, they are discarded. A transactional ob-
ject is a container for a regular Java object. A transac-
tion can access the contained object by opening the trans-
actional object, and then reading or modifying the regular
object. Changes to objects opened by a transaction are not
visible to other transactions until the transaction commits.
(Changes are discarded if the transaction aborts.) Trans-
actions are linearizable [8]: they appear to take effect in a
one-at-a-time order.

PODC Workshop on Concurrency and Synchronization in Java Programs,
July 25-26, 2004, St. John’s, Newfoundland, Canada.

Copyright 2004 Christopher Cole and Maurice Herlihy.

63

Maurice Herlihy
Brown University
Computer Science Department

herlihy@cs.brown.edu.

If two transactions open the same object at the same time,
a synchronization conflict occurs, and one of the conflict-
ing transactions must be aborted. To reduce synchroniza-
tion conflicts, an object can be opened in one of several
access modes. An object opened in WRITE mode can be
read or modified, while an object opened in READ mode
can only be read. WRITE mode conflicts with both READ
and WRITE modes, while READ mode conflicts only with
WRITE.

DSTM also provides TEMP mode, a special kind of read-
only mode that indicates that the transaction may release
the object before it commits. Once such an object has been
released, concurrent accesses of any kind do not cause syn-
chronization conflicts. It is the programmer’s responsibility
to ensure that releasing objects does not violate transaction
linearizability.

The contribution of this paper is to examine the effec-
tiveness of these access modes on a small-scale multipro-
cessor. We find that the overhead associated with READ
and TEMP modes mostly outweighs any advantage in re-
ducing synchronization conflict. To address this issue, we
introduce a novel SNAP (snapshot) mode, an alternative to
TEMP mode with much lower overhead. SNAP mode pro-
vides almost the same behavior as TEMP, but much more
efficiently.

2. RELATED WORK

Transactional memory was originally proposed as a hard-
ware architecture [6, 16], and continues to be the focus of
hardware-oriented research [13]. There have also been sev-
eral proposals for software transactional memory and similar
constructs [2, 1, 9, 12, 15]. Others [10, 14] have studied the
performance of read/write locks.

An alternative approach to software transactional mem-
ory (STM) is due to Harris and Fraser [5]. Their STM
implementation is word-based: the unit of synchronization
is a single word of memory. An uncontended transaction
that modifies N words requires 2N 4+ 1 compare-and-swap
calls. Fraser [4] has proposed a FSTM implementation that
is object-based: the unit of synchronization is an object of
arbitrary size. Here, an uncontended transaction that mod-
ifies N objects also requires 2N + 1 compare-and-swap calls.
Herlihy et al. [7] have proposed an object-based DSTM
implementation, described below, in which an uncontended
transaction that modifies IV objects requires IN 41 compare-
and-swap calls, but sometimes requires traversing an addi-
tional level of indirection. In both object-oriented STM im-
plementations, objects must be copied before they can be

modified. Marathe and Scott [11] give a more detailed com-
parison of these STM implementations.

3. DSTM IMPLEMENTATION

Here we summarize the relevant aspects of the DSTM
implementation (a more complete description appears else-
where [7]).

When transaction A attempts to open an object, it may
discover that the object has already been opened by a trans-
action B. A can decide either to back off and give B a chance
to complete, or it can proceed, forcing B to abort. The pol-
icy decision is handled by a separate Contention Manager
module.

Each time a transaction opens an object, it checks whether
it has been aborted by a synchronization conflict, a process
called wvalidation. This check prevents an aborted trans-
action from wasting resources, and also ensures that each
transaction has a consistent view of the transactional ob-
jects.

When a transaction opens a transactional object, it ac-
quires a reference to a version of that object. If the object
is opened in WRITE mode, the transaction may modify that
version, and otherwise it may only observe that version.

Opening an object in WRITE mode requires creating a

new version (by copying the old one) and executing a compare-

and-swap instruction. When an object is opened in READ
mode, the transaction simply returns a reference to the most
recent committed version. The transaction records that ref-
erence in a private read table. To validate, the transaction
checks whether each of its version references is still current.
This implementation has the advantage that reading does
not require an expensive compare-and-swap instruction. It
has two disadvantages: validation takes time linear in the
number of objects read, and the contention manager can-
not tell whether an object is open in READ mode. For this
reason, we call this implementation the invisible read.

Because of these disadvantages, we devised an alterna-
tive READ mode implementation, which we call the visible
read. This implementation is similar to WRITE mode, ex-
cept that it does not copy the current version, and the object
keeps a list of reading transactions. Validating a transaction
takes constant time, and reads are visible to the contention
manager. Each read does require a compare-and-swap, and
opening an object in WRITE mode may require traversing
a list of prior readers.

Similarly, TEMP mode also has both visible and invisible
implementations. Releasing an object either causes the ver-
sion to be discarded (invisible) or the reader removed from
the list (visible).

4. BENCHMARKS

An IntSet is an ordered linked list of integers providing
insert() and delete() methods. We created three bench-
marks: WRITE, READ, and RELEASE. Each benchmark
runs for twenty seconds randomly inserting or deleting val-
ues from the list. The WRITE benchmark opens each list
element in WRITE mode. The READ benchmark opens
each list element in READ mode until it discovers the el-
ement to modify, which it reopens in WRITE mode. The
RELEASE benchmark opens each element in TEMP mode,
releasing each element after opening its successor (similar to
lock coupling). Each experiment was run using the Polite

64

Invisible Visible |
WRITE 36.6 22.3
READ 4.9 (13.5%) | 23.9 (107.3%)
RELEASE | 19.9 (54.5%) | 21.2 (95.2%)

Table 1: Single-Thread Throughput

contention manager which uses exponential back-off when
conflicts arise. For example, when transaction A is about to
open an object already opened by transaction B, the Polite
contention manager backs off several times, doubling each
expected duration, to give B a chance to finish. If B does
not finish in that duration, then A aborts B, and proceeds.
The benchmarks were run on a machine with four In-
tel Xeon processors. Each processor runs at 2.0 GHz and
has 1 GB of RAM. The machine was running Debian Linux
and each experiment was run 100 times for twenty sec-
onds each. The performance data associated with individ-
ual method calls was extracted using the Extensible Java
Profiler [3]. Each benchmark was run using 1, 4, 16, 32,
and 64 threads. The single-thread case is interesting be-
cause it provides insight into the amount of overhead the
experiment incurred. In the four-thread benchmarks, the
number of threads matches the number of processors, while
the benchmarks using 16, 32, and 64 thread show how the
transactions behave when they share a processor. To control
the list size, the integer values range only from 0 to 255.

5. BENCHMARK RESULTS

Table 1 shows the single-processor throughput (transac-
tions committed per millisecond) for both the invisible and
visible implementations. In the single-thread benchmarks,
there is no concurrency, and hence no synchronization con-
flicts, so the throughput numbers reflect the modes’ inherent
overheads.

To ease comparisons, the READ and RELEASE through-
put numbers are labeled with their percentages of the com-
parable WRITE benchmark. (For example, the invisible
READ’s throughput of 4.9 is 13.5% of the invisible WRITE’s
throughput.)

The invisible WRITE had better throughput than the vis-
ible WRITE, because when the visible WRITE opens an ob-
ject, it checks whether any transaction has the object open
in READ mode. Even though there are no such transactions
(in a single-threaded benchmark), the check takes time. The
invisible READ performed poorly because it validates each
object previously open for READ each time a new object is
opened. The visible READ performed slightly better than
WRITE because it does not need to copy the object version.
The invisible RELEASE performed better than the invisi-
ble READ because it releases objects, and once an object is
released, it no longer needs to be validated.

Table 2 shows the time (in nanoseconds) for common
method calls. The WRITE and “READ & TEMP” rows
show the time needed to open an object in those modes,
the UPGRADE row shows the time needed to upgrade from
READ or TEMP mode to WRITE mode, and the RELEASE
line shows the time needed to release an object opened in
TEMP mode. These timings to not always mirror the bench-
mark throughput numbers because the visible implementa-
tion incurs all its overhead in calls to the open() method,

Invisible | Visible
WRITE 180 730
READ &TEMP | 280 135
UPGRADE 250 160
RELEASE 90 40
Table 2: Common Method Call Timings (nanosec-
onds)

while the invisible implementation incurs costs each time
the current transaction is validated as a side-effect of other
DSTM calls.

We now turn our attention from single-thread executions,
where overhead dominates, to multi-thread executions, where
we hope to see gains in READ or RELEASE mode due to
reduced synchronization conflicts.

Table 3 shows the transactions-per-millisecond through-
put of the invisible implementation for varying numbers of
threads, and Table 4 does the same for the visible imple-
mentation.

Surprisingly, perhaps, the concurrency allowed in READ
and TEMP did not overcome the overhead in either im-
plementation (with one minor exception). In the invisible
implementation, a transaction takes an excessive amount of
time to traverse the list because it must validate its read-
only table with each DSTM API call. A transaction at-
tempting to insert a large integer may never find the inte-
ger’s position in the list before being aborted. In the visible
implementation, the single-threaded benchmark has a slight
advantage because it does not need to copy the version be-
ing opened. In the multithreaded benchmarks, however, the
visible implementation incurs overhead because it must tra-
verse and prune a non-trivial list of readers.

We ran a number of other experiments, including longer
lists and adding additional delays (“work”) to transactions.
The results, omitted here for brevity, are essentially un-
changed: overall, READ and TEMP modes do not enhance
throughput.

Naturally, these results are valid only for the specific im-
plementation and platform tested here. It may be that plat-
forms with more processors, or a different contention man-
ager, or different internals would behave differently. Never-
theless, to address the problem of increasing throughput on
our four-processor platform, we devised a new SNAP mode
described in the next section.

6. SNAPSHOT MODE

In an attempt to find a low-overhead alternative, we de-
vised a new snapshot mode for opening an object.

public TMCloneable open(SNAP)

throws DeniedException

This method returns a reference to the version that would
have been returned by a call to open(READ). It does not
actually open the object for reading, and the DSTM does
not keep any record of the snapshot. All methods throw
DeniedException if the current transaction has been aborted.
The version argument to the next three methods is a
version reference returned by a prior call to open (SNAP).

public void snapValidate(TMCloneable version)

65

throws DeniedException, SnapshotException

The call returns normally if a call to open (SNAP) (or open (READ))

would have returned the same version reference. Otherwise,
the call throws a SnapshotException. Throwing this ex-
ception does not abort the current transaction, allowing the
transaction to retry another snapshot.

public TMCloneable
snapUpgradeRead (TMCloneable version)
throws SnapshotException, DeniedException

If the version argument is still current, this method opens
the object in READ mode, and otherwise throws an excep-
tion (SnapshotException).

public TMCloneable snapUpgradeWrite(TMCloneable)
throws SnapshotException, DeniedException

If the version argument is still current, this method opens
the object in WRITE mode, and otherwise throws an ex-
ception (SnapshotException).

Objects opened in TEMP mode are typically used in one
of the following three ways. Most commonly, an object is
opened in TEMP mode and later released. The transaction
will be aborted if the object is modified in the interval be-
tween when it is opened and when it is released, but the
transaction will be unaffected by modifications that occur
after the release.

Entry entry = (Entry)tmObject.open(TEMP) ;

entry.release();
The same effect is achieved by the following code fragment:

Entry entry = (Entry)tmObject.open(SNAP);

tmObject.snapValidate(entry) ;

The first call returns a reference to the object version that
would have been returned by open(TEMP) (or open(READ)),
and the second call checks that the version is still valid.
There is no need for an explicit release because the transac-
tion will be unaffected if that version is changed (assuming
it does not validate again).

Sometimes an object is opened in TEMP mode and never
released (which is equivalent to opening the object in READ
mode). To get the same effect in SNAP mode, the transac-
tion must apply snapUpgradeRead to the object, atomically
validating the snapshot and acquiring READ access.

Finally, an object may be opened in TEMP mode and
later upgraded to WRITE mode. The snapUpgradeWrite()
method provides the same effect.

To illustrate how one might use SNAP mode, figure 1
shows the code for a insert() method based on SNAP
mode. It is not necessary to understand this code in detail,
but there are three lines that merit attention. As the trans-
action traverses the list, prevObject is a reference to the last
transactional object accessed, and lastObject is a reference
to that object’s predecessor in the list. In the line marked
A, the method validates for the last time that lastObject is
still current, effectively releasing it. If the method discovers
that the value to be inserted is already present, then in the
line marked B, it upgrades access to the predecessor entry
to READ, ensuring that no other transaction deletes that
value. Similarly, if the method discovers that the value to be

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 36.6 35.7 32.9 29.6 24.7
READ 4.9 (13.5%) | 1.7 (4.7%) | 0.6 (1.7%) | 0.5 (1.8%) | 0.5 (2.2%)
RELEASE | 19.9 (54.5%) | 8.5 (23.7%) | 4.2 (12.6%) | 3.8 (12.8%) | 3.7 (15.1%)
Table 3: Invisible Implementation
1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 22.3 23.1 21.4 20.0 17.6
READ 23.9 (107.3%) | 0.1 (0.3%) | 0.2 (0.9%) | 0.2 (1.1%) | 0.2 (1.2%)
RELEASE | 21.2 (95.2%) | 0.03 (0.1%) | 0.1 (0.7%) | 0.2 (1.0%) | 0.3 (1.6%)

Table 4: Visible Implementation

inserted is not present, it upgrades access to the predecessor
entry to WRITE, so it can insert the new entry.

The principal benefit of SNAP mode is that it can be im-
plemented very efficiently. This mode is “stateless”, in the
sense that the DSTM run-time does not need to keep track of
versions opened in SNAP mode (unlike READ mode). The
snapValidate, snapUpgradeRead and snapUpgradeWrite calls
simply compare their arguments to the object’s current ver-
sion. Moreover, SNAP mode adds no overhead to transac-
tion validation.

7. SNAP BENCHMARKS

The results of running the same benchmark in SNAP
mode instead of TEMP mode are shown in Tables 5 (in-
visible) and 6 (visible). For both visible and invisible imple-
mentations, SNAP mode has substantially higher through-
put than both READ and TEMP mode. Opening an object
in SNAP mode takes about 100ns, including validation. It
takes about 125ns to upgrade an object opened in SNAP
mode to to WRITE mode.

Even though invisible SNAP mode outperforms invisible
READ and TEMP, it still has lower throughput than in-
visible WRITE. We believe this disparity reflects inherent
inefficiencies in the invisible READ implementation. The
invisible SNAP implementation must upgrade to invisible
READ mode whenever it observes that a value is absent (to
ensure it is not inserted), but transactions that open objects
in invisible READ mode are often aborted, precisely because
they are invisible to the contention manager.

While the result of combining invisible READ and SNAP
modes is disappointing, the result of combining visible READ
and SNAP modes is dramatic: here is the first alternative
mode that outperforms WRITE mode across the board.

To investigate further, we implemented some benchmarks
that mixed “modifying” method calls with “observer” (read-
only) method calls. We introduced a contains() method
that searches the list for a value. We tested benchmarks
in which the percentages of modifying calls (insert() and
delete()) varied were 50% (Table 7), 10% (Table 8), 1%
(Table 9), and 0% (Table 10). Each of the SNAP mode
benchmarks had higher throughput than its WRITE coun-
terpart, and was the only benchmark to do so.

8. CONCLUSIONS

More research is needed to determine the most effective
methods for opening objects concurrently in software trans-
actional memory. We were surprised by how poorly READ
and TEMP modes performed on our small-scale benchmarks.
While our SNAP mode implementation substantially out-
performs both READ and TEMP modes, it is probably
appropriate only for advanced programmers. It would be
worthwhile investigating whether or not a contention man-
agement scheme could increase the throughput of read trans-
actions, or if there are more efficient designs for tracking
objects open for reading.

Notice that the DSTM guarantees that every transaction,
even ones that are doomed to abort, sees a consistent set
of objects. For the invisible read, this guarantee is expen-
sive, because each object read must be revalidated every
time a new object is opened. An alternative approach, used
in Fraser’s FSTM [4], does not guarantee that transactions
see consistent states, but uses periodic checks and handlers
to protect against memory faults and unbounded looping
due to inconsistencies. The relative merits of these two ap-
proaches remains an open topic for further research.

66

public boolean insert(int v) {
List newList = mew List(v);

TMObject newNode = new TMObject(newList);

TMThread thread = (TMThread)Thread.currentThread();

while (thread.shouldBegin()) {
thread.beginTransaction() ;
boolean result = true;
try {
TMObject lastNode = null;
List lastList = null;
TMObject prevNode = this.first;

List prevList = (List)prevNode.openSnap();

/*Ax/

/*B*/

/*Cx/

}

}

}

}
}

TMObject currNode = prevList.next;
List currlList = (List)currNode.openSnap();
while (currlist.value < v) {
if (lastNode !'= null)
lastNode.snapValid(lastList) ;
lastNode = prevNode;
lastList = prevlist;
prevNode = currNode;
prevlList = currlist;
currNode = currList.next;
currList = (List)currNode.openSnap();
}
if (currlist.value == v) {
prevNode.snapUpgradeRead (prevList) ;
result = false;
} else {
result = true;
prevlist = (List)prevNode.snapUpgradeWrite(prevList);
newlList.next = prevlList.next;
prevlList.next = newNode;

// final validations

if (lastNode != null)
lastNode.snapValid(lastList);

currNode.snapValid(currList);

catch (SnapshotException s) {

thread.getTransaction() .abort () ;

catch (DeniedException d) {

if (thread.commitTransaction()) {

}

return result;

return false;

Figure 1: SNAP-mode insert method

67

0.
1]

3]
[4]

[5]

[7]

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 36.6 35.7 32.9 29.6 24.7
READ 4.9 (13.5%) | 1.7 (4.7%) | 0.6 (1.7%) | 0.5 (1.8%) | 0.5 (2.2%)
RELEASE | 19.9 (54.5%) | 8.5 (23.7%) | 4.2 (12.6%) | 3.8 (12.8%) | 3.7 (15.1%)
SNAP 624 (170.7%) | 16.7 (46.8%) | 10.9 (33.2%) | 10.2 (34.6%) | 9.6 (39.0%)
Table 5: SNAP with Invisible
1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 22.3 23.1 21.4 20.0 17.6
READ 23.9 (107.3%) | 0.1 (0.3%) | 0.2 (0.9%) | 0.2 (1.1%) | 0.2 (1.2%)
RELEASE | 21.2 (95.2%) | 0.03 (0.1%) | 0.1 (0.7%) | 0.2 (1.0%) | 0.3 (1.6%)
SNAP 104.8 (469.9%) | 62.3 (269.6%) | 56.4 (263.2%) | 42.2 (210.7%) | 37.8 (214.9%)
Table 6: SNAP with Visible
1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 22.1 23.0 21.4 19.6 17.2
READ 23.3 (105.6%) | 0.2 (0.8%) | 0.5 (2.3%) | 0.9 (4.8%) | 1.1 (6.6%)
RELEASE | 20.8 (94.2%) | 0.1 (0.4%) | 0.5 (2.2%) | 0.8 (4.3%) | 1.1 (6.3%)
SNAP 108.4 (491.5%) | 81.0 (352.1%) | 72.4 (337.7%) | 59.5 (302.9%) | 31.7 (184.0%)
Table 7: Visible with 50% Modification
1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 22.3 22.9 20.9 19.4 17.2
READ 23.6 (106.0%) | 0.5 (2.3%) | 2.8 (13.4%) | 3.9 (20.1%) | 3.1 (18.2%)
RELEASE | 21.1 (94.7%) | 0.4 (1.7%) | 2.4 (11.7%) | 3.2 (16.7%) | 3.0 (17.6%)
SNAP 109.7 (491.6%) | 86.9 (379.4%) | 88.1 (420.7%) | 58.3 (300.7%) | 19.8 (115.1%)
Table 8: Visible with 10% Modification
REFERENCES Proceedings of the twenty-second annual symposium on

Yehuda Afek, Dalia Dauber, and Dan Touitou.
Wait-free made fast. In Proceedings of the
twenty-seventh annual ACM symposium on Theory of
computing, pages 538-547. ACM Press, 1995.
Anderson and Moir. Universal constructions for large
objects. In WDAG: International Workshop on
Distributed Algorithms. LNCS, Springer-Verlag, 1995.
http://ejp.sourceforge.net/.

Keir Fraser. Practical lock-freedom. Technical Report
UCAM-CL-TR~579, University of Cambridge
Computer Laboratory, February 2004.

Tim Harris and Keir Fraser. Language support for
lightweight transactions. In Proceedings of the 18th
ACM SIGPLAN conference on Object-oriented
programing, systems, languages, and applications,
pages 388-402. ACM Press, 2003.

M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the Twentieth Annual International
Symposium on Computer Architecture, 1993.

Maurice Herlihy, Victor Luchangco, Mark Moir, and
William N. Scherer, ITI. Software transactional
memory for dynamic-sized data structures. In

68

(10]

(11]

(12]

Principles of distributed computing, pages 92—101.
ACM Press, 2003.

Maurice P. Herlihy and Jeannette M. Wing.
Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst.,
12(3):463-492, 1990.

Amos Israeli and Lihu Rappoport.
Disjoint-access-parallel implementations of strong
shared memory primitives. In Proceedings of the
thirteenth annual ACM symposium on Principles of
distributed computing, pages 151-160. ACM Press,
1994.

Theodore Johnson. Approximate analysis of reader
and writer access to a shared resource. In Proceedings
of the 1990 ACM SIGMETRICS conference on
Measurement and modeling of computer systems,
pages 106-114. ACM Press, 1990.

Virendra J. Marathe and Michael L. Scott. A
qualitative survey of modern software transactional
memory systems. Technical Report 839, Department
of Computer Science University of Rochester, June
2004.

Mark Moir. Transparent support for wait-free

(13]

(14]

(15]

(16]

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 20.9 20.9 20.3 18.0 15.9
READ 22.2 (105.9%) | 5.1 (24.4%) | 11.5 (56.8%) | 7.8 (43.3%) | 1.9 (11.8%)
RELEASE | 20.8 (99.4%) | 5.4 (25.7%) | 3.4 (16.9%) | 2.9 (16.3%) | 2.7 (16.7%)
SNAP 105.0 (501.2%) | 97.4 (466.0%) | 98.1 (483.4%) | 62.8 (348.9%) | 24.6 (154.7%)

Table 9: Visible with 1% Modification

1 Thread 4 Threads 16 Threads 32 Threads 64 Threads
WRITE 11.5 11.8 11.0 10.2 9.0
READ 124 (107.7%) | 9.0 (76.1%) | 4.6 (42.3%) | 24 (23.6%) | 0.5 (6.0%)
RELEASE | 11.0 (95.6%) | 3.2 (27.5%) | 24 (21.6%) | 2.2 (21.5%) | 2.0 (22.4%)
SNAP 61.3 (531.0%) | 55.6 (472.4%) | 61.0 (555.9%) | 67.3 (662.5%) | 71.3 (790.0%)

Table 10: Visible with 0% Modification

transactions. In Proceedings of the 11th International
Workshop on Distributed Algorithms, pages 305-319,

1997.

Ravi Rajwar and James R Goodman. Transactional
lock-free execution of lock-based programs.

Martin Reiman and Paul E. Wright. Performance
analysis of concurrent-read exclusive-write. In
Proceedings of the 1991 ACM SIGMETRICS
conference on Measurement and modeling of computer
systems, pages 168-177. ACM Press, 1991.

Nir Shavit and Dan Touitou. Software transactional
memory. In Symposium on Principles of Distributed

Computing, pages 204-213, 1995.

Janice M. Stone, Harold S. Stone, Philip Heidelberger,
and John Turek. Multiple reservations and the
Oklahoma update. IEEE Parallel Distrib. Technol.,

1(4):58-71, 1993.

69

Contention Management in Dynamic Software
Transactional Memory*

William N. Scherer [l and Michael L. Scott
Department of Computer Science
University of Rochester
Rochester, NY 14627-0226
{scherer, scott }@s. rochester. edu

Abstract

Obstruction-free concurrent algorithms differ from
those with stronger nonblocking conditions in that
they separate progress from correctness. While it
must always maintain data invariants, an obstruction-
free algorithm need only guarantee progress in the
absence of contention. The programmer can (and in-
deed must) address progress as an out-of-band, or-
thogonal concern.

In this work we consider the Java-based obstruc-
tion-free Dynamic Software Transaction Memory
(DSTM) system of Herlihy et al. When two or
more transactions attempt to access the same block
of transactional memory concurrently, at least one
transaction must be aborted. The decision of which
transaction to abort, and under what conditions, is
the contention management problem. We introduce
several novel policies for contention management,
and evaluate their performance on a variety of bench-
marks, all running on a 16-processor SunFire 6800.
We also evaluate the marginal utility of earlier, but
somewhat more expensive detection of conflicts be-
tween readers and writers.

1 Introduction

Non-blocking algorithms are notoriously difficult to
design and implement. Although this difficulty is
partially inherent to asynchronous interleavings due
to concurrency, it may also be ascribed to the many
different concerns that must be addressed in the de-
sign process. With lock-free synchronization, for

*This work was supported in part by NSF grants num-
bers EIA-0080124, CCR-9988361, and CCR-0204344, by

DARPA/AFRL contract number F29601-00-K-0182, and by fi -

nancial and equipment grants from Sun Microsystems Labora-
tories.

example, one must not only ensure that the algo-
rithm functions correctly, but also guard against live-
lock. With wait-free synchronization one must ad-
ditionally ensure that every thread makes progress in
bounded time; in general this requires that one “help”
conflicting transactions rather than aborting them.

Obstruction-free concurrent algorithms[3] lighten
the burden by separating progress from correct-
ness, allowing programmers to address progress as
an out-of-band, orthogonal concern. The core of
an obstruction-free algorithm need only guarantee
progress when only one thread is running (though
other threads may be in arbitrary states).

Dynamic software transactional memory (DSTM)
[4] is a general purpose system for obstruction-free
implementation of arbitrary concurrent data struc-
tures. Though applicable in principle to many pro-
gramming environments, it is currently targeted at
Java, where automatic garbage collection simplifies
storage management concerns. DSTM is novel in its
support for dynamically allocated objects and trans-
actions, and for its use of modular contention man-
agers to separate issues of progress from the correct-
ness of a given data structure.

Contention management in DSTM may be
summed up as the question: what do we do when
two transactions have conflicting needs to access a
single block of memory? At one extreme, a policy
that never aborts an “enemy” transaction can lead to
deadlock in the event of priority inversion or mutual
blocking, to starvation if a transaction deterministi-
cally encounters enemies, and to a major loss of per-
formance in the face of page faults and preemptive
scheduling. At the other extreme, a policy that al-
ways aborts an enemy may also lead to starvation,

70

or to livelock if transactions repeatedly restart and
then at the same step encounter and abort each other.
A good contention manager must lie somewhere in
between, aborting enemy transactions often enough
to tolerate page faults and preemption, yet seldom
enough to make starvation unlikely in practice. We
take the position that policies must also be provably
deadlock free. It is the duty of the contention man-
ager to ensure progress; we say that it does so out-of-
band because its code is entirely separate from that of
the transactions it manages, and contributes nothing
to their conceptual complexity.

Section 2 begins our study with an overview of
DSTM. Section 3 then describes our contention
management interface and presents several novel
contention management policies. Section 4 evalu-
ates the performance of these policies on a suite of
benchmark applications. Our principal finding is that
different policies perform best for different combi-
nations of application, workload, and level of con-
tention. The out-of-band nature of contention man-
agers in DSTM is thus quite valuable: it allows the
programmer to choose the policy best suited to a
given situation. We also find that early detection of
conflicts between readers and writers can be either
helpful or harmful, again depending on application,
workload, and level of contention. This suggests that
it may be desirable to provide both “visible” and “in-
visible” reads in future versions of DSTM. We sum-
marize our conclusions in Section 5.

2 Dynamic STM

DSTM transactions operate on blocks of memory.
Typically, each block corresponds to one Java ob-
ject. Each transaction performs a standard sequence
of steps: initialize; open and update one or more
blocks (possibly choosing later blocks based on data
in earlier blocks); attempt to commit; if committing
fails, retry. Blocks can be opened for full read-write
access, read-only access, or for temporary access
(where the block can later be discarded if changes
to by other transactions won’t affect the viability of
current one).

Under the hood, each block is represented by a
TMODbject data structure that consists of a pointer
to a Locator object. The Locator in turn has point-
ers to the transaction that has most recently opened

Data

./transaction
@ new object
TMObject |14 oPject

Figure 1: Transactional object structure

the TMObiject, together with old and new data object
pointers (see Figure 1).

When a transaction attempts to open a block, we
first read the Locator pointer in the TMObject for the
block. We then read the status word for the transac-
tion that has most recently updated the block to deter-
mine whether the old or the new data object pointer is
current. If this status word is conmi t t ed, then the
new object is current; otherwise the old one is. Next,
we build a new Locator that points to our transaction
and has the active version of the data as its old ob-
ject. We copy the data for the new object and then
atomically update the TMObject to point to our new
Locator. Finally, we store the new Locator and its
corresponding TMObiject in our transaction record.

To validate that a transaction is still viable, we ver-
ify that each Locator in it is still the current Locator
for the appropriate TMObject. Finally, to commit
a transaction, we atomically update our transaction’s
status word from act i ve to commi t t ed. This up-
date, if successful, signals that all of our updated ver-
sions of the data objects are the ones that are current.

With this implementation, only one transaction at
a time can have a block open for write access, be-
cause only one can have its Locator pointed to by the
block’s TMObject. If another transaction wishes to
write an already-opened block, it must first abort the
“enemy” transaction. This is done by atomically up-
dating that transaction’s status field from acti ve to
abort ed. Once this is done, the aborted transac-
tion’s attempt to commit is doomed to fail.

2.1 Visbleand Invisible Reads

In the original version of the DSTM, read-only ac-
cess to blocks was achieved by creating a private
copy. The Locator for the block was then stored
with the transaction record. At validation time, a
conflict would be detected if the current and stored
Locators did not match. We term this implementa-
tion an invisible read because it associates no artifact

71

from the reading transaction with the block. A com-
peting transaction attempting to open the block for
write access cannot tell that readers exist, so there
is no “hook” through which contention management
can address the potential conflict.

An alternative implementation of read-only access
adds a pointer to the transaction to a linked list of
readers for the block. This implementation adds
some overhead to read operations and increases the
complexity of subsequently opening the block for
read-write access: the writer must traverse the list
and explicitly abort the readers. In exchange for this
overhead, however, we gain the ability to explicitly
manage conflicts between readers and writers, and to
abort doomed readers early.

2.2 Limiting Mutual Abortion

If a thread decides to abort another transaction in
the current DSTM implementation, it does so with-
out first checking to see whether its own transac-
tion remains viable. There is thus a significant win-
dow during which two transactions can detect a mu-
tual conflict and decide to abort each other. To nar-
row (though not eliminate) this window, we propose
checking the status of the current transaction imme-
diately before aborting an enemy. This is a very low-
overhead change: it consists of a single read of the
transaction’s status word.

3 Contention Management Policies

The contention management interface for the DSTM

includes notification methods for about various

events that can occur during the processing of trans-

actions, plus two request methods that ask the man-

ager to make a decision. Notifications include

e Beginning a transaction

e Successfully committing a transaction

Failing to commit a transaction

Self-abortion of a transaction

Beginning an attempt to open a block (for read-

only, temporary, or read-write access)

Successfully opening a block (3 variants)

e Failing to open a block (3 variants) due to failed
transaction validation

e Successfully changing access to read-only/tem-
porary/read-write on a block already open in an-
other mode (6 total variants)

Requests are

e Should the transaction (re)start at this time?
e Should the transaction abort an enemy?

Because the contention management methods are
called in response to DSTM operations, they must
themselves be non-blocking. Additionally, a con-
tention manager must always (eventually) abort a
competing transaction (else deadlock could result).
There are no further correctness considerations for
contention managers: one is free to design them as
needed for overall efficiency. As illustrated by the
sample managers presented here and in the original
DSTM paper [4], the design space is quite large. In
this work, we begin to explore that space by adapting
policies used in a variety of related problem domains.

3.1 Aggressive

The Aggressive manager ignores all notification
methods, and always chooses to abort an enemy
transaction at conflict time. Although this makes it
highly prone to livelock, it forms a useful baseline
against which to compare other policies.

3.2 Polite

The Polite contention manager uses exponential
backoff to resolve conflicts encountered when open-
ing blocks. Upon detecting contention, it spins for
a period of time proportional to 2"ns, where n is
the number of retries that have been necessary so far
for access to a block. After a maximum of 8 retries,
the polite manager unconditionally aborts an enemy
transaction. One might expect the Polite manager to
be particularly vulnerable to performance loss due to
preemption and page faults.

3.3 Randomized

A very simple contention manager, the Randomized
policy ignores all notification methods. When it en-
counters contention, it flips a coin to decide between
aborting the other transaction and waiting for a ran-
dom interval of up to a certain length. The coin’s
bias and the maximum waiting interval are tunable
parameters; we used 50% and 64ns, respectively.

34 Karma

The Karma manager attempts to judge the amount of
work that a transaction has done so far when deciding
whether to abort it. Although it is hard to estimate
the amount of work that a transaction performs on
the data contained in a block, the number of blocks
the transaction has opened may be viewed as a rough

72

indication of investment. For system throughput,
aborting a transaction that has just started is prefer-
able to aborting one that is in the final stages of an
update spanning tens (or hundreds) of blocks.

The Karma manager tracks the cumulative num-
ber of blocks opened by a transaction as its priority.
More specifically, it resets the priority of the current
thread to zero when a transaction commits and in-
crements that priority when the thread successfully
opens a block. When a thread encounters a conflict,
the manager compares priorities and aborts the en-
emy if the current thread’s priority is higher. Other-
wise, the manager waits for a fixed amount of time
to see if the enemy has finished. Once the number of
retries plus the thread’s current priority exceeds the
enemy’s priority, the manager kills the it.

What about the thread whose transaction was
aborted and has to start over? In a way, we owe it
a karmic debt: it was killed before it had a chance
to finish its work. We thus allow it to keep the pri-
ority (“karma”) that it had accumulated before being
killed, so it will have a better chance of being able
to finish its work in its “next life”. Note that every
thread necessarily gains at least one point in each un-
successful attempt. This allows short transactions to
gain enough priority to compete with others of much
greater lengths.

3.5 Eruption

The Eruption manager is similar to the Karma man-
ager in that both use the number of opened blocks
as a rough measure of investment. It resolves con-
flicts, however, by increasing pressure on the transac-
tions that a blocked transaction is waiting on, eventu-
ally causing them to “erupt” through to completion.
Each time a block is successfully opened, the trans-
action gains one point of “momentum” (priority).
When a transaction finds itself blocked by one of
higher priority, it adds its momentum to the conflict-
ing transaction and then waits for it to complete. Like
the Karma manager, Eruption waits for time propor-
tional to the difference in priorities before killing an
enemy transaction.

The reasoning behind this management policy is
that if a particular transaction is blocking resources
critical to many other transactions, it will gain all of
their priority in addition to its own and thus be much
more likely to finish quickly and stop blocking the

others. Hence, resources critical to many transac-
tions will be held (ideally) for short periods of time.
Note that while a transaction is blocked, other trans-
actions can accumulate behind it and increase its pri-
ority enough to outweigh the transaction blocking it.

Mutually blocking transactions are a potential
problem, since one will have to time out before ei-
ther can progress. To keep this problem from recur-
ring, the Eruption manager halves the accumulated
priority of an aborted transaction.

In addition to the Karma manager, Eruption draws
on Tune et al.’s QO dDep and QCons techniques
for marking instructions in the issue queue of a su-
perscalar out-of-order microprocessor to predict in-
structions most likely to lie on the critical path of
execution [8].

3.6 KillBlocked

Adapted from McWherter et al.’s POW lock priori-
tization policy [6], the KillBlocked manager is less
complex than Karma or Eruption, and features rapid
elimination of cyclic blocking. The manager marks a
transaction as blocked when first notified of an (un-
successful) non-initial attempt to open a block. The
manager aborts an enemy transaction whenever (a)
the enemy is also blocked, or (b) a maximum wait-
ing time has expired.

3.7 Kindergarten

Based loosely on the conflict resolution rule in
Chandy and Misra’ Drinking Philosophers problem
[2], the Kindergarten manager encourages transac-
tions to take turns accessing a block. For each
transaction 7", the manager maintains a list (initially
empty) of enemy transactions in favor of which T
has previously aborted. At conflict time, the manager
checks the enemy transaction and aborts it if present
in the list; otherwise it adds the enemy to the list and
backs off for a short length of time. It also stores the
enemy’s hash code as the transaction on which 7' is
currently waiting. If after a fixed number of back-
off intervals it is still waiting on the same enemy;, the
Kindergarten manager aborts transaction 7. When
the calling thread retries 7', the Kindergarten man-
ager will find the enemy in its list and abort it.

3.8 Timestamp
The Timestamp manager is an attempt to be as fair
as possible to transactions. The manager records

73

the current time at the beginning of each transaction.
When it encounters contention between transaction
T and some enemy, it compares timestamps. If T’s
timestamp is earlier, the manager aborts it. Other-
wise, it begins waiting for a series of fixed intervals.
After half the maximum number of these intervals,
it flags the enemy transaction as potentially defunct.
After the maximum number of intervals, if the de-
funct flag has been set all along, the manager aborts
the enemy. If the flag has ever been reset, however,
the manager doubles the wait period and starts over.
Meanwhile, if the enemy transaction performs any
transaction-related operations, its manager will see
and clear the defunct flag.

Timestamp’s goal is to avoid aborting an earlier-
started transaction regardless of how slowly it runs
or how much work it performs. The defunct flag
provides a feedback mechanism for the other trans-
action to enable us to distinguish a dead transaction
from one that is still active. Of course, the use of
timestamps to resolve contention is hardly new to
this context; similar algorithms have been in use in
the database community for almost 25 years [1].

3.9 QueueOnBlock

The QueueOnBlock manager reacts to contention by
linking itself into a queue hosted by the enemy trans-
action. It then spins on a “finished” flag that is
eventually set by the enemy transaction’s manager
at completion time. Alternatively, if it has waited
for too long, it aborts the enemy transaction and
continues; this is necessary to preserve obstruction
freedom. For its part, the enemy transaction walks
through the queue setting flags for competitors when
it is either finished or aborted. Note that not all
of these competitors need have been waiting for the
same block. If more than one was, any that lose the
race to next open it will enqueue themselves with the
winner.

Clearly, QueueOnBlock does not effectively deal
with block dependency cycles: at least one transac-
tion must time out before either can progress. On
the other hand, if the block access pattern is free of
such dependencies, this manager will usually avoid
aborting another transaction.

4 Experimental Results

4.1 Benchmarks

We present experimental results for five benchmarks.
Three implementations of an integer set (IntSet,
IntSetRelease, RBTree) are drawn from the original
DSTM paper [4]. These three repeatedly but ran-
domly insert or delete integers in the range 0..255
(keeping the range restricted increases the probabil-
ity of contention). The total number of success-
ful operations completed in a fixed period of time
is reported as the overall throughput for the bench-
mark. The first implementation uses a sorted linked
list in which every block is opened for write access;
the second uses a sorted linked list in which blocks
are first opened transiently and then released as the
transaction approaches its insertion/deletion point;
the third uses a red-black tree in which blocks are
first opened for read-only access, then upgraded to
read-write access when changes are necessary.

The fourth benchmark (Counter) is a simple
shared counter that threads increment via transac-
tions. The fifth (LFUCache) is a simulation of cache
replacement in an HTTP web proxy using the least-
frequently used (LFU) algorithm [7]. caching com-
munity, this algorithm is treated as folklore; however,
an algorithm assumes that frequency (rather than re-
cency) of web page access is the best predictor for
whether a web page is likely to be accessed again in
the future (and thus, worth caching).

The simulation uses a two-part data structure to
emulate the cache. The first part is a lookup table
of 2048 integers, each of which represents the hash
code for an individual HTML page. These are stored
as a single array of TMObj ect s. Each contains the
key value for the object (an integer in the simulation)
and a pointer to the page’s location in the main por-
tion of the cache. The pointers are null if the page is
not currently cached.

The second, main part of the cache consists of a
fixed size priority queue heap of 255 entries (a binary
tree, 8 layers deep), with lower frequency values near
the root. Each priority queue heap node contains a
frequency (total number of times the cached page has
been accessed) and a page hash code (effectively, a
backpointer to the lookup table).

Worker threads repeatedly access a page. To ap-
proximate the workload for a real web cache, we pick

74

pages randomly from a Zipf distribution with expo-
nent 2. So, for page 4, the cumulative probability
peli) o Yo<j<i1/5%. We precompute this distri-
bution normalized to a sum of one million so that a
page can be chosen with a flat random number.

The algorithm for “accessing a page” first finds the
page in the lookup table and reads its heap pointer.
If that pointer is non-null, we increment the fre-
quency count for the cache entry in the heap and
then reheapify the cache using backpointers to up-
date lookup table entries for data that moves. |If
the heap pointer is null, we replace the root node of
the heap (guaranteed by heap properties to be least-
frequently accessed) with a node for the newly ac-
cessed page. In order to induce hysteresis and give
pages a chance to accumulate cache hits, we perform
a modified reheapification in which the new node
switches place with any children that have the same
frequency count (of one).

4.2 Methodology

Our results were obtained on a 16-processor SunFire
6800, a cache-coherent multiprocessor with 1.2Ghz
UltraSPARC 111 processors. Our test environment
was Sun’s Java 1.5 beta 1 HotSpot JVM, augmented
with a JSR 166 update jar file obtained from Doug
Lea’s web site [5]. We ran each benchmark with each
of the contention management policies described in
Section 3 for 10 seconds. We completed four passes
of this test regime for both visible and invisible read
implementations, varying the level of concurrency
from 1 to 128 threads. We also repeated the tests
both with and without our optimization to limit mu-
tual abortion of transactions described in Section 2.2.
Although we do not compare our results to a lock-
based system, this comparison may be found in the
original DSTM paper [4].

Figures 2—6 show averaged results for the Counter
and LFUCache benchmarks, the read-black tree-
based integer set benchmark, and the two linked
list-based integer set benchmarks. Each graph is
shown both in total and zoomed in on the first 16
threads (where multiprogramming does not occur).
We present results only for tests with the reduced
window for mutual abortion. Only one of our bench-
marks (the red-black tree) is susceptible to mutual
blocking, and even here the optimization does not
produce a significant difference in results. On the

other hand, there is also no noticeable overhead for
the optimization.

4.3 Comparison Among Managers

The graphs illustrate that the choice of contention
manager is crucial. For every configuration of every
benchmark, the difference between a top-performing
and a bottom-performing manager is at least a factor
of 4, and for all but the IntSetRelease benchmark a
factor of 10.

In the Counter benchmark, where every trans-
action conflicts with every other, the Kindergarten
manager performs best. This effect can probably
be attributed to the delay that is introduced when a
Kindergarten manager aborts its own transaction be-
fore flipping state to abort an opposing transaction;
transactions in this benchmark are short enough that
the opposing transaction has a chance to complete in
that window. The Timestamp manager also does well
in the Counter benchmark. Here, there is no poten-
tial concurrency to be lost to serialization from the
implicit queue formed by transaction start times.

In the non-release variant of the IntSet bench-
mark, again every transaction conflicts with every
other transaction. Mirroring the Counter benchmark,
the Kindergarten manager gives best performance,
though by a much larger margin. The other man-
agers perform very badly, though Karma gives some
throughput at low contention levels.

For the IntSetRelease benchmark, managers sep-
arate into a few levels of performance. In the case
with invisible reads, Timestamp performs badly, but
the others are roughly comparable, with a slight edge
to the Kindergarten manager. With visible reads,
however, Karma achieves a substantial gain over all
other managers tested, averaging about a factor of
two in non-preemptive thread counts. Interestingly,
the single worst performer is the Kindergarten man-
ager; here, it virtually livelocks.

Greater disparity between managers can be found
in the LFUCache benchmark. Before multiprogram-
ming, with invisible reads, managers either perform
well (Karma, Kindergarten, Polite, KillBlocked) or
livelock at four threads (all others). With preemp-
tion, however, only Karma is able to sustain top per-
formance; the others drop off to varying extents.
With visible reads, on the other hand, there is a
clear performance advantage for the Kindergarten

75

Tx/10s (dstm.benchmark.Counter) [Invisible Reads]
1.2e+07
1le+07 @
8e+06 A4y
6e+06

20 40 60 80

100 120

Tx/10s (dstm.benchmark.Counter) [Visible Reads]
1.2e+07
le+07 W
8e+06 4w
6e+06
4e+06
2e+06

0
20 40 60 80 100 120
KillBlocked —+— Eruption ---0---
Aggressive - Karma ---@--
Polite - Timestamp =&
Randomized -3 QueueOnBlock &
Kindergarten -—-#--

Tx/10s (dstm.benchmark.Counter) [Invisible Reads]
1.2e+07

1.2e+07
1le+07
8e+06 4 *
6e+06
4e+06
2e+06
0
KillBlocked —+— Eruption ---0---
Aggressive - Karma ---@---
Polite - Timestamp -2
Randomized &3 QueueOnBlock &~
Kindergarten -—#&--

Figure 2: Counter benchmark results

manager. All others drop to low performance very
quickly, although Karma does not do as poorly as the
others and QueueOnBlock seems to do well at high
levels of multiprogramming.

We also see much disparity in the RBTree bench-
mark. With visible reads, Karma outperforms all
other managers by a wide margin, beginning at two
threads; it is the only manager that does not vir-
tually livelock by six threads. For invisible reads,
Karma still gives top performance, but the Aggres-
sive and Polite managers perform equally well, and
QueueOnBlock is strong except in the 8-32 thread
range. Interestingly, most of the remaining managers
improve performance as the level of multiprogram-
ming increases, with a plateau around 80 threads.

Across benchmarks, no single manager gives good
performance in all cases. Karma and Kindergarten,
however, are frequently top performers. Although
overall throughput never increases with increasing
numbers of threads, each benchmark has some man-
agement policy that does not degrade throughput. Of
course, the limited set size we use in the benchmarks
is designed to artificially increase contention, so op-
portunities for parallelism are limited anyway.

4.4 Visbility of Reads

In both the Counter and non-release IntSet bench-
marks, there are no read accesses to blocks. As ex-
pected, we see no performance difference between
visible and invisible read implementations.

In the IntSetRelease benchmark, however, there is
a significant difference. While more of the managers
do well with invisible reads, visible reads enable top
performers to achieve almost 15 times the through-
put that top performers manage with invisible reads.
Middle-of-the-road managers with visible reads far
outperform themselves with invisible reads. Only the
Kindergarten manager does worse with visible than
invisible reads.

With the RBTree benchmark, however, the sit-
uation is reversed: Karma does well with either
read implementation, but all other managers perform
worse, dramatically so in most cases. Similarly, in
the LFUCache benchmark, managers universally do
worse with visible than with invisible reads.

Why does this happen? In IntSetRelease, most
reads are temporary, lasting just long enough for a
thread to find the next element in the linked list; true
conflict only occurs when two threads need to up-
date the same node. Visible reads allow writers to

76

Tx/10s (dstm.benchmark.LFUCache) [Invisible Reads]

6e+06

20 40 60 80

Tx/10s (dstm.benchmark.LFUCache) [Visible Reads]

6e+06 |
5e+06 |May
4e+06 4 o
3e+06 o
2e+06
1le+06
0
KillBlocked —+— Eruption ---0---
Aggressive - Karma ---@--
Polite - Timestamp =&
Randomized -3 QueueOnBlock &
Kindergarten -—-#--
Figure 3:

stall and let the readers move on instead of forcing
them to restart from the beginning.

In the RBTree benchmark, by comparison, con-
flicts between readers and writers are typically be-
tween a reading thread that is working its way from
the root of the red-black tree towards an inser-
tion/deletion point and a writing thread that is restor-
ing the red-black tree properties upwards to the root
after an insertion/deletion. If we make the reads vis-
ible, not only do the writers get delayed repeatedly
(all transactions start at the tree root), but each time a
writer clobbers an enemy transaction, they are likely
to meet again, closer to the root. This especially ex-
plains the performance of the Kindergarten manager
here: if a writer meets the same enemy twice, the
other thread will “get a turn” and abort it.

5 Conclusions

In this paper we have presented a variety of con-
tention management policies embodied in contention
managers for use with dynamic software transac-
tional memory. We have evaluated each of these
managers against a variety of benchmark applica-
tions, including one novel benchmark (LFUCache)
created specifically for this purpose. We have fur-
ther evaluated each combination of benchmark and

Tx/10s (dstm.benchmark.LFUCache) [Invisible Reads]

A
=
10 12
KillBlocked —+— Eruption ---0---
Aggressive - Karma ---@---
Polite - Timestamp -2
Randomized &3 QueueOnBlock &~
Kindergarten -—#&--

LFUCache benchmark results

manager with each of two different implementations
of read access in the DSTM, and with and without an
optimization designed to the limit the window during
which two transactions can mutually abort.

We found that different contention management
policies work better for different benchmark applica-
tions, and that no single manager provides all-around
best results. In fact, every manager that does well
in any one benchmark does abysmally in one of the
others we tested. Since the difference in throughput
performance can span several orders of magnitude,
gaining better understanding of when and why vari-
ous policies do well is a crucial open problem.

The choice between visible and invisible reads
is similarly difficult: different benchmarks perform
better with different implementations. Again, further
research is needed to understand when to use each
type of reads. We speculate that it may be helpful to
allow applications or contention managers to choose
between implementations. For example, a transac-
tion that tends to succeed almost all the time with
little contention might be better served with lower-
overhead invisible reads, but if it fails several times
in a row, visible reads could be used to signal other
transactions not to abort it.

77

Tx/10s (dstm.benchmark.RBTree) [Invisible Reads]
1.2e+06 2
1e+06 £
800000
600000 i,
400000 | 4
200000 |
0 &

2e+06 &
1.8e+06
1.6e+06
1.4e+06 Lo
1.2e+06 & !
1le+06
800000
600000 F :
400000 (& ;
200000
0

KillBlocked —+—
Aggressive - Xommev
Polite -
Randomized
Kindergarten --—-m--

Eruption ---©
Karma ~--@--
Timestamp &
QueueOnBlock &~

Tx/10s (dstm.benchmark.RBTree) [Invisible Reads]
1.2e+06 =
16406 | %

800000 B-_e'—
600000 [/ .

400000 | |

200000 | |
04

S o -
H e Yottt o
6 16

2e+06
1.8e+06
1.6e+06 [\ ® o
1.46+06 [\
1.2e+06 | &
1e+06
800000 | #
600000 |
400000 | '
200000 | |

12 14

KillBlocked —+—
Aggressive -

Polite -
Randomized &3
Kindergarten

Eruption ---0---
Karma ---@--
A

A

Timestamp ——4--
QueueOnBlock -

Figure 4: RBTree benchmark results

Our benchmark suite provides little opportunity to
assess the value of a narrowed window for mutual
aborts. Further experimentation is needed with ap-
plications in which mutual blocking may arise.

6 Acknowledgments

We are indebted to Maurice Herlihy, Victor
Luchangco, and Mark Moir for various useful and
productive conversations on the topic of contention
management, and for providing a version of the
DSTM that supports both visible and invisible reads.

References

[1] P A.Bernstein and N. Goodman. Timestamp-Based
Algorithms for Concurrency Control in Distributed
Database Systems. In Proceedings of the Sxth
VLDB, pages 285-300, Montreal, Canada, October
1980.

K. M. Chandy and J. Misra. The Drinking Philoso-
phers Problem. ACM Transactions on Program-
ming Languages and Systems, 6(4):632—646, Octo-

(2]

ber 1984.

[3] M. Herlihy, V. Luchangco, and M. Mair.
Obstruction-Free Synchronization: Double-
Ended Queues as an Example. In Proceedings

(4]

(5]

(6]

(7]

(8]

78

of the Twenty-Third International Conference on
Distributed Computing Systems, Providence, RI,
May, 2003.

M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer I1l. Software Transactional Memory for
Dynamic-sized Data Structures. In Proceedings of
the Twenty-Second ACM Symposium on Principles
of Distributed Computing, pages 92—101, Boston,
MA, July 2003.

D. Lea Concurrency JSR-166 Interest Site.
http://gee.cs.oswego.edu/dl/concurrency-interest/.

D. T. McWherter, B. Schroeder, A. Ailamaki, and
M. Harchol-Balter. The Case for Preemptive Pri-
ority Scheduling in Transactional Database Work-
loads. Submitted to VLDB 2004.

J. T. Robinson and N. V. Devarakonda. Data Cache
Management Using Frequency-Based Replacement.

E. Tune, D. Liang, D. M. Tullsen, and B. Calder.
Dynamic Prediction of Critical Path Instructions.
In Proceedings of the Seventh International Sympo-
sium on High Performance Computer Architecture,
pages 185-196, January 2001.

Tx/10s (dstm.benchmark.IntSet) [Invisible Reads]

350000
300000
250000 |
200000 |
150000
100000
50000

0

L L
80 100

120

Tx/10s (dstm.benchmark.IntSet) [Visible Reads]

400000 . ‘ .
350000 ¥ | R R .- | S S
300000
250000
200000 ¢
150000
100000
50000 f:
04 "
60 80 100 120
KillBlocked —+— Eruption
Aggressive X Karma -
Polite - Timestamp ~~2&--
Randomized =] QueueOnBlock &
Kindergarten -

Tx/10s (dstm.benchmark.IntSet) [Invisible Reads]

350000 £
300000 %}
250000
200000
150000
100000
50000

0

400000
350000 #
300000
250000
200000
150000
100000
50000

KillBlocked —+—
Aggressive -
Polite %
Randomized =
Kindergarten -——&--

Eruption ---©

Karma ---@---
Timestamp -4

QueueOnBlock -

> L

Figure 5: IntSet benchmark results

Tx/10s (dstm.benchmark.IntSetRelease) [Invisible Reads]
25000

20000
15000 [

10000 |

Tx/10s (dstm.benchmark.IntSetRelease) [Visible Reads]
300000

250000 M
200000 |
150000 §
100000
50000
04

20 40 60 80 100 120
KillBlocked —+— Eruption --—6---
Aggressive - Karma @

Polite - Timestamp -4~
Randomized & QueueOnBlock &
Kindergarten ---m--

Tx/10s (dstm.benchmark.IntSetRelease) [Invisible Reads]

20000 -
18000 g et ‘
16000

12000
10000
8000
6000

Tx/10s (dstm.benchmark.IntSetRelease) [Visible Reads]

300000
250000 &
200000
150000
100000
50000 f
0
KillBlocked —+— Eruption --—-6---
Aggressive - Karma @ -
Polite - Timestamp -4~
Randomized -8 QueueOnBlock &
Kindergarten -—&—-

Figure 6: IntSetRelease benchmark results

79

Finding Concurrency Bugs In Java

David Hovemeyer and William Pugh
Dept. of Computer Science, University of Maryland
College Park, Maryland 20742 USA
{daveho,pugh}@cs.umd.edu

ABSTRACT

Because threads are a core feature of the Java language, the
widespread adoption of Java has exposed a much wider audi-
ence to concurrency than previous languages have. Concur-
rent programs are notoriously difficult to write correctly, and
many subtle bugs can result from incorrect use of threads
and synchronization. Therefore, finding techniques to find
concurrency bugs is an important problem.

Through development and use of an automatic static anal-
ysis tool, we have found a significant number of concurrency
bugs in widely used Java applications and libraries. Inter-
estingly, we have found that race conditions abound in con-
current Java programs; underuse of synchronization is the
rule rather than the exception. We have also found many ex-
amples of other kinds of concurrency errors, suggesting that
many Java programmers have fundamental misconceptions
about how to write correct multithreaded programs.

This paper makes two main contributions. First, it de-
scribes simple analysis techniques that are effective at find-
ing concurrency errors in real programs. Second, it provides
evidence that threads and concurrency are widely misused
in Java, even in programs written by experienced program-
mers.

1. INTRODUCTION

When used correctly, threads are an elegant mechanism
to express concurrency and parallelism. Many applications,
especially network server applications, have significant con-
currency, and can benefit from parallel execution in multi-
processor systems. The Java language, by making threads
a core language feature, has achieved wide popularity for
writing concurrent programs.

However, threads and concurrency can be difficult to use
correctly. Concurrency bugs, such as race conditions and
deadlocks, can result in program misbehavior that is very
difficult to diagnose. In general, reasoning about the possi-
ble behavior of a multithreaded program is difficult.

For some kinds of programs, events can be used in place

80

of threads to avoid some of the issues that make threaded
programming difficult [19]. However, events alone cannot be
used to express parallelism, which is an important require-
ment for many applications. Several race-free and deadlock-
free dialects of Java have been proposed [5, 6]; however,
these dialects have not yet been widely adopted.

To better understand the kinds of concurrency bugs af-
fecting Java programs, we have studied a variety of real ap-
plications and libraries using a static analysis tool which we
developed. The tool, called FindBugs, searches for instances
of bug patterns—code idioms that are likely to be errors.
Our experience in developing the tool and using it on real
software has lead us to several interesting conclusions:

1. Concurrency errors are very common, even in software
widely used in production environments

2. Many programmers have fundamental misconceptions
about concurrency in Java

3. Many serious bugs can be found with simple analysis
techniques

The structure of this paper is as follows. In Section 2, we
give an overview of our findings. In Section 3, we describe
concurrency bug patterns, how our tool recognizes instances
of those patterns, and how we tuned those detectors to yield
more accurate results with fewer false positives. In Section 4,
we present empirical data on the effectiveness of the detec-
tors on several real Java applications and libraries, as well as
anecdotal experience using the tool. In Section 5, we discuss
related work. In Section 6, we present conclusions from this
study, and describe possibilities for future work.

2. CONCURRENCY IN JAVA PROGRAMS

Writing correct concurrent programs is difficult [19]. The
inherent nondeterminism of threaded programs, as well as
the complexity of the semantics governing multithreaded ex-
ecution, makes it difficult for programmers to reason about
possible program behaviors. Small errors or inconsistencies,
such as forgetting to obtain a lock before accessing a field,
can lead to runtime errors that are very hard to debug.

Static analysis techniques have been very successful at
finding many kinds of bugs in real software [16, 12, 10, 7],
including errors in multithreaded programs [21, 3, 13, 11].
Bug checkers based on static analysis represent an important
component of quality assurance, and can be very effective
at finding potential bugs.

When we began working on techniques to find bugs in
Java programs, we assumed that we would need to use so-

phisticated analysis techniques, especially in the case of con-
currency bugs, where the prerequisites for a bug to manifest
may involve subtle interactions between multiple threads.
Instead, we found that simple analysis techniques were very
effective, because all of the multithreaded software we looked
at contained very obvious synchronization errors. We at-
tribute this to two main causes.

First, many programmers, especially beginning program-
mers, do not understand the fundamentals of thread syn-
chronization. We have seen many examples of code idioms,
such as spin loops and race-prone condition waits, that indi-
cate basic misconceptions about how threads work. Surpris-
ingly, we see these idioms even in widely-used software, sug-
gesting that these misconceptions are common even among
experienced programmers.

Second, many programmers tend to view synchronization
as something to be avoided whenever possible, presumably
due to the assumption that synchronization is “slow”. This
attitude is surprising. Recent research [4, 18] has greatly re-
duced the overhead of locking for the uncontended case. Like
any performance optimization, eliminating performance bot-
tlenecks caused by locks must be done using careful profil-
ing and analysis which takes the expected workload into
account. Many programmers, however, appear to believe
that good performance can be ensured by making the most
frequent accesses to shared mutable data structures unsyn-
chronized, even at the expense of correctness. In some cases,
we even see comments indicating that the programmer was
aware that he or she was writing incorrect code.

It should also be noted that our methods are not intended
to be complete. There are many kinds of concurrency errors
we do not attempt to detect, and our failing to detect con-
currency errors should give no confidence that concurrency
errors do not occur.

2.1 Why Java Concurrency is Difficult

Writing correct concurrent or multithreaded programs is
exceeding difficult in any language that allows for explicit
concurrency and admits the possibility of incorrect synchro-
nization [19]. However, there are perhaps more problems
in Java than in other languages, paradoxically because pro-
grammers are not as scared of writing multithreaded Java
programs. All of the problems we cite also arise in other lan-
guages, such as C, C++ or C#. However, few people write
multithreaded C programs unless they have carefully stud-
ied operating systems and/or concurrency, while high school
students write multithreaded Java programs. Also, the con-
sequences of incorrect programs in Java are not as severe.
For example, a race condition in a Java program cannot
cause the program to violate type safety, and faults arising
when objects are accessed in an inconsistent state, such as
null pointer dereferences and out of bound array accesses,
are guaranteed to trapped and propagated as exceptions.

A more fundamental problem is that programmers often
have an incorrect mental model of what behaviors are pos-
sible in concurrent Java programs. From the concurrency
errors we have found in the applications and libraries we ex-
amined, it is apparent that many programmers believe that
their program will execute in a sequentially consistent [1]
manner. In sequential consistency, there is a global total
order over all memory accesses, consistent with program or-
der for all threads. Sequential consistency would allow some
uses of data races to have useful semantics. For example, use

81

of the double checked locking idiom [8] to avoid acquiring a
lock works as expected under sequential consistency.

Unfortunately, the Java memory model [15] is not se-
quentially consistent. Processors and compiler optimiza-
tions may reorder memory accesses in ways that violate se-
quential consistency. This issue is compounded by the fact
that aggressive inlining of methods, performed by most mod-
ern JVMs, can make the scope of optimizations non-local.
This makes it very difficult to guess the possible behavior of
code with a race condition by simply eyeballing the code.

In this paper we will show some examples of code where it
is clear that the programmer had a serious misunderstanding
of the semantics of concurrency in Java. Many programmers
are trapped in the second order of ignorance [2] with respect
to concurrent programming in Java: they do not understand
how to write correct multithreaded programs, and they are
not aware that they do not understand.

3. CONCURRENCY BUG PATTERNS

Our work has focused on finding simple, effective analysis
techniques to find bugs in Java programs, including con-
currency bugs. We start by identifying bug patterns, which
are code idioms that are often errors. We have used many
sources to find bug patterns: some have come from books
and articles, while many have been suggested by other re-
searchers and Java developers, or have been found through
our own experience.

Detecting bug patterns is the automated equivalent of a
code review—bug pattern detectors look for code that devi-
ates from good practice. While to goal is to find real errors,
bug pattern detectors can also produce warnings that do
not correspond to real problems. Sometimes, false warnings
arise because the analysis technique used by the bug pattern
detector is inherently imprecise. Other times, a detector will
make non-conservative assumptions about the likely behav-
ior of the program in order to retain precision in the face of
difficult program analysis problems, such as pointer aliasing
or heap modeling.

Once we have identified a new bug pattern, we start with
the simplest technique we can think of to detect instances
of the pattern in Java code. Often, we will start out using
simple state-machine driven pattern-matching techniques.
We then try applying the new detector to real programs. If it
produces too many false warnings, we either add heuristics,
or move to a more sophisticated analysis technique (such
as dataflow analysis). Our target for accuracy is that at
least 50% of the warnings produced by the detector should
represent genuine bugs.

We have implemented bug detectors for over 45 bug pat-
terns, including 21 multithreaded bug patterns, in a tool
called FindBugs. All of the detectors operate on Java byte-
code, using the Apache Byte Code Engineering Library?.
FindBugs is distributed under an open source license, and
may be downloaded from the FindBugs website:

http://findbugs.sourceforge.net

This section describes some of the concurrency bug pat-
terns implemented in FindBugs, discusses some of the im-
plementation decisions and tradeoffs we made in writing de-
tectors for those patterns, and presents some examples of
bugs found by the tool.

http://jakarta.apache.org/bcel

3.1 Inconsistent Synchronization

When mutable state is accessed by multiple threads, it
generally needs to be protected by synchronization. A very
common technique in Java is to protect the mutable fields
of an object by locking on the object itself. A method may
be defined with the synchronized keyword, in which case a
lock on the receiver object is obtained for the scope of the
method. Or, if finer grained synchronization is desired, a
synchronized(this) block may be used to acquire the lock
within a block scope. Classes whose instances are intended
to be thread safe should generally only access shared fields
while the instance lock is held. Unsynchronized field accesses
often are race conditions that can lead to incorrect behavior
at runtime. We refer to unsynchronized accesses in classes
intended to be thread safe as inconsistent synchronization.

To detect inconsistent synchronization, the FindBugs tool
tracks the scope of locked objects®. For every instance field
access, the tool records whether or not a lock is held on the
instance through which the field is accessed. Fields that are
not consistently locked are reported as potential bugs.

We use a variety of heuristics to reduce false positives.
Field accesses in object lifecycle methods, such as construc-
tors and finalizers, are ignored, because it is unlikely that the
object is visible to multiple threads in those methods. We
ignore non-final public fields, on the assumption users must
be responsible for guarding synchronization of such fields.
Volatile fields are also ignored, because under the proposed
Java memory model [15], reads and writes of volatile fields
can be used to enforce visibility and ordering guarantees be-
tween threads. Similarly, final fields are ignored, since they
are largely thread safe (the only exception being cases where
objects are made visible to other threads before construction
is complete).

Initially, we assumed that shared fields of objects intended
by programmers to be thread-safe would generally be syn-
chronized consistently, and that bugs would usually be the
result of oversight by the programmer. For example, a pro-
grammer might add a public method to a thread-safe class,
but forget to make the method synchronized. Under this
assumption, we used the frequency of unsynchronized ac-
cesses to prioritize the warnings generated for inconsistently
synchronized fields. Fields with 25% or fewer unsynchro-
nized accesses (but at least one unsynchronized access) were
assigned medium or high priority. Fields with 25-50% un-
synchronized accesses were assigned low priority, on the as-
sumption that such fields were likely to be only incidentally
(not intentionally) synchronized.

To evaluate the appropriateness of our ranking heuristic,
we manually categorized inconsistent synchronization warn-
ings for several applications and libraries. We used three
categories to describe the accuracy of the warnings:

Serious An accurate warning, where the unsynchronized
accesses might result in incorrect behavior at runtime.

Harmless An accurate warning, where the unsynchronized
accesses would be unlikely to result in incorrect behav-
ior. An example would be an unsynchronized getter
method that returns the value of an integer field.

2The analysis is intraprocedural, with the addition that calls
to non-public methods within a class are analyzed, and non-
public methods called only from locked contexts are consid-
ered to be synchronized as well.

82

False An inaccurate warning: either the analysis performed
by the tool was incorrect, or any unsynchronized ac-
cesses would be guaranteed to behave correctly.

Our decisions were based on manual inspection of the of
the code identified by each warning. While our judgment is
fallible, we tried to err on the side of classifying warnings as
false or harmless if we could not see a scenario that would
lead to unintended behavior.

We then studied the number of serious, harmless, and
false warnings that would be reported by the tool for vary-
ing cutoff values for the minimum percentage of unsynchro-
nized field accesses. For example, for a cutoff value of 75%,
only fields whose accesses were synchronized at least 75%
of the time would be reported. By graphing the number of
warnings in these categories, we were able to evaluate the va-
lidity of the hypothesis that most of the serious bugs would
have a high percentage of synchronized accesses. We com-
bined the ‘harmless’ and ‘false’ categories because together
they represent the set of warnings we believed would not be
of interest to developers. Figure 1 shows these graphs for
several applications and libraries.

We were surprised to find that the likelihood of an in-
consistently synchronized field being a serious bug was not
strongly related to the percentage of synchronized accesses
for the range of cutoff values we examined. In other words,
the inconsistent synchronization bugs we found were not
generally the result of the programmer simply forgetting to
synchronize a particular field access or method. Instead,
we found that the lack of synchronization was almost al-
ways intentional-—the programmer had deliberately used a
race condition to communicate between threads. The data
suggests that we should try even lower cutoff values (below
50%), since many genuine bugs were found for fields syn-
chronized only 50% of the time. The message to take away
here is that lack of synchronization is not exceptional; for
many classes, it is the norm.

3.1.1 Forms of Inconsistent Synchronization

As we examined examples of inconsistent synchronization,
we noticed several common forms:

Synchronized field assignment, unsynchronized field
use. In this form, locking is used whenever a field is set, but
not when the field is read. There are two potential problems
here.

First, the value read is not guaranteed to be up to date
when it is eventually used; if the read is part of an operation
with multiple steps, the operation will not be guaranteed to
take place atomically. A more subtle problem is that if a
reference is read from a field without synchronization, there
is generally no guarantee that the object will be completely
initialized.

This was the most common form of inconsistent synchro-
nization. An example is shown in Figure 2.

Object pair operation. In this form, an operation is
performed involving two objects, each of which can be ac-
cessed by multiple threads. However, a lock is acquired on
only one of the objects, allowing the other to be vulnera-
ble to concurrent modification. This problem is especially
prevalent in equals() methods. It can be quite hard to
fix because of the potential deadlock issues: if two threads
try to lock both objects, but use different lock acquisition
orders, a deadlock can result.

Number of warnings

Inconsistent synchronization false positive results for classpath-0.08

45 T T T T T T 1
Serious

Harmless and false ————

0]]]]]]]

50 55 60 65 70 75 80 85 90 95
Minimum accesses synchronized (percent)

100

Inconsistent synchronization false positive results for jpboss-4.0.0DR3

35 T T T T T T T 1
Serious
30 \L Harmless and false ———— -
|
g B __ -
£
S
g 20 —
k]
o 15 —
Ko}
€
>
z 10 -
5 —
0 -4~ |
50 55 60 65 70 75 80 8 90 95 100
Minimum accesses synchronized (percent)
Figure 1:

Number of warnings

Number of warnings

Inconsistent synchronization false positive results for rt-1.5-b42

120 | | | |
Serious
100 Harmless and false ———— _|
0 1 1 1 >
50 60 70 80 90 100
Minimum accesses synchronized (percent)
Inconsistent synchronization false positive results for jacorb-2.1
20 — T T T T T T T 1
Serious
Harmless and false ————
0 | | | | | | | N |
50 55 60 65 70 75 80 8 90 95 100

Minimum accesses synchronized (percent)

Serious bugs and false and harmless warnings for varying values for minimum percentage of

synchronized accesses. The applications are two implementations of the J2SE core libraries (rt-1.5-b42 and
classpath-0.08), a open source Java application server (jboss-4.0.0DR3), and an open source CORBA ORB
(jacorb-2.1). Our hypothesis that fields with lower (but nonzero) percentages of unsynchronized accesses
would be more likely to be errors was found to be incorrect.

83

// java.lang, StringBuffer.java, line 825

public int lastIndexOf (String str)
{
return lastIndex0f(str, count - str.count);

}

Figure 2: An atomicity bug in GNU Classpath 0.08.
The count field is read without synchronization and
then passed to a synchronized method. Because the
value may be out of date, an ArrayIndexOutOfBounds
exception can result.

3.1.2 Limitations of the Inconsistent Synchronization

Detector

While it is effective at finding many concurrency bugs,
the inconsistent synchronization detector has some impor-
tant limitations. First, programs that are free of race con-
ditions may still have atomicity bugs. A naive approach to
synchronization is to make every method of a class synchro-
nized. However, successive calls to methods in such a class
will not occur atomically unless a lock on the receiver object
is explicitly held in a scope surrounding both calls. Another
limitation is that the detector only works when shared fields
are synchronized by locking the object instance. Although
this is a common technique in Java, it is also common to
use explicit lock objects. Modifying the detector to han-
dle arbitrary lock objects would require more sophisticated
analysis, including some form of heap analysis.

3.2 Double Checked Locking

Lazy initialization is a common performance optimization
used to create singleton objects only as they are needed. In
a multithreaded program, some form of synchronization is
needed to ensure that the singleton object is created only
once, and that the object is always fully initialized before it
is used.

A common idiom for lazy initialization of singleton objects
is double checked locking. Synchronization is performed only
if the object has not yet been created:

static SomeClass field;

static SomeClass createSingleton() {
if (field == null) {
synchronized (lock) {
if (field == null) {
SomeClass obj = new SomeClass();
// ...initialize obj...
field = obj;
}
}
}
return field;

}

The intent of double checked locking is that the overhead
of lock acquisition is only incurred if the singleton object is
observed as not having been created yet.

Unfortunately, this form of double checked locking is not
correct. Although the idiom guarantees that the object is
created only once, the Java memory model does not guar-
antee that the threads that see a non-null field value (but

84

do not acquire the lock) will see all of the writes used to ini-
tialize the object. For example, the JIT compiler may inline
the call to the constructor and reorder some of the writes
initializing the object so that they occur after the write to
the field storing the object instance.

Double checked locking is a good illustration of the gulf
between how multithreaded code looks like it should be-
have and the behaviors actually allowed by the language.
Most programmers can easily understand how synchroniza-
tion can be used to guarantee the atomicity of a sequence
of operations. However, it is much harder to understand
the subtle interaction of compiler and processor optimiza-
tions. Memory model issues are challenging even for experts:
double checked locking has been advocated in a number of
books and articles (as mentioned in [8]), showing that even
experts do not always understand the consequences of omit-
ting proper synchronization.

Under the proposed Java Memory Model [15], it is pos-
sible to fix instances of double checked locking by making
the field volatile. The volatile qualifier causes the compiler
to insert the necessary optimization and memory barriers
needed to ensure that all threads will see a completely ini-
tialized object, even if they don’t acquire the lock. However,
volatiles must be used with caution; almost all programmers
should forego the use of volatiles in favor of using locking.

Our detector for this bug pattern looks for sequences of
bytecode containing an ifnull instruction, followed by a
monitorenter instruction, followed by another ifnull. This
implementation catches many instances of double checked
locking, with a low false positive rate. We have experi-
mented with more sophisticated detectors for this pattern,
but we found that they were not significantly more accurate.

An example of incorrect double checked locking found in
JBoss-4.0.0DR3 is shown in Figure 3.

3.3 Wait Not In Loop

Java monitors support notify and wait operations to al-
low threads to wait for a condition related to the state of
a shared object. For example, in a multithreaded blocking
queue class, the dequeue () method would wait for the queue
to become nonempty, and the enqueue () method would per-
form a notify to wake up any threads waiting for the queue
to become nonempty.

Often, a single Java monitor is used for multiple condi-
tions. For such classes, the correct idiom is to surround the
call to wait with a loop which repeatedly checks the condi-
tion. Without the loop, the thread would not know whether
the condition is actually true when the call to wait returns.

The condition can fail to be true for several reasons:

e The monitor is being used for multiple conditions, so
the condition set by the notifying thread may not be
the one the waiting thread is waiting for.

e In between the notification and the return from wait,
another thread obtains the lock and changes the con-
dition. For example, a thread might be waiting for a
queue to become non-empty. A thread inserts a new el-
ement into the queue and notifies the waiting thread.
Before the waiting thread acquires the lock, another
thread removes the element from the queue.

e The specification for the wait method allows it to spu-
riously return for no reason. This can arise due to

// org.jboss.net.axis.server, JBossAuthenticationHandler.java,

// line 178

public void invoke(MessageContext msgContext) throws AxisFault {
// double check does not work on multiple processors, unfortunately

if ('isInitialised) {
synchronized (this) {
if (lisInitialised) {
initialise();

}

Figure 3: A double checked locking bug in JBoss-4.0.0DR3. Not only does the comment indicate that the
programmer was aware the idiom is incorrect, the initialise() method writes a true value to the isInitialised
field before the object has been completely initialized, meaning that the code would not be correct on a single
processor system, even if the Java memory model were sequentially consistent.

if (!book.isReady()) {
DebugInfo.println("book not ready");

synchronized (book) {
DebugInfo.println("waiting for book");
book.wait();

}

Figure 4: An unconditional wait bug in an early
version of the International Children’s Digital Li-
brary. If the book becomes ready after isReady()
is called and before the lock is acquired, the notifi-
cation could be missed and the thread could block
forever.

special handling needed for the interaction of inter-
rupts and waiting, and because underlying operating
system synchronization primitives used by the JVM,
such as pthreads, allow spurious wakeups.

The detector for this bug pattern examines bytecode for a
call to wait () which is not in close proximity to the target
of a backwards branch (i.e., a loop head).

3.4 Unconditional Wait

The Unconditional Wait pattern is a special case of Wait
Not In Loop. In this bug pattern, a wait is performed imme-
diately (and unconditionally) upon entering a synchronized
block. Often, this indicates that the programmer did not
include the test for the waited-for condition as part of the
scope of the lock, which could lead to a missed notification.
An example of this bug pattern is shown in Figure 4.

3.5 Other Concurrency Bug Patterns

This section presents several other concurrency bug pat-
terns. These detectors are generally not effective at finding
bugs in mature software. However, they are often useful in
finding bugs in code written by inexperienced programmers.

Mismatched Wait and Notify. In this bug pattern,
the programmer calls a wait or notify method without hold-
ing a lock on the monitor object. This will result in an

85

IllegalMonitorStateException being thrown. Our imple-
mentation intraprocedurally tracks the scopes of locks, and
emit a warning when a call to a wait or notify method is
seen without a lock being held on the receiver object.

Two Locks Held While Waiting. Signaling between
threads is often handled by using wait() and notify()/
notifyAl1(). When wait() is invoked, the thread invoking
wait must hold a lock on the object on which wait is invoked,
and all locks on that object are released while the thread is
waiting. However, locks on other objects are not released.
This can cause poor performance, and can cause deadlock
if they thread that is trying to perform a notify needs to
acquire that lock.

This detector performs an intraprocedural analysis to find
the scope of locks, and emits a warning whenever a method
holds multiple locks when wait is invoked.

Calling notify() instead of notify All(). When a shared
object is visible to multiple threads, it is possible for more
than one thread to wait on the object’s monitor. When
multiple conditions are associated with a single monitor,
the threads waiting on the monitor may be waiting for more
than one distinct condition. Because Java makes no guaran-
tee about which thread is woken when the notify () method
is called, it is good practice to use notifyAll() instead, so
that all threads are woken. Otherwise, the thread woken
might not be the one waiting for the condition that the no-
tifier has made true.

Invoking Thread.run() instead of Thread.start().
The run() method of classes extending the Thread class de-
fines the code to be executed as the body of a new thread.
Inexperienced programmers sometimes call the run() method
directly, not realizing that it will not actually start the
thread.

Mutable lock. In order for lock objects to be used cor-
rectly by multiple threads, they need to be created before
the threads that use them for synchronization. Therefore,
it is suspicious when a method performs synchronization on
an object loaded from a field that was assigned earlier in the
method.

Naked Notify. In general, calling a notify method on a
monitor is done because some condition another thread is
waiting for has become true. To correctly notify the waiting
thread (or threads) of a change in the condition, the noti-

// get next items from queue if any
while (listlock) {

}

listlock = true;

Figure 5: A spin loop in an early version of the
International Children’s Digital Library.

fying thread must make an update to shared state before
performing the notification. The detector for this bug pat-
tern looks for calls to notify methods which do not appear to
be associated with earlier updates to shared mutable state.

Because calls to notify methods always increase the live-
ness of threads in a program, instances of this pattern are
not always genuine bugs. However, misunderstanding the
correct use of wait and notify is common for inexperienced
programmers, and this detector helps inform them when
their code deviates from good practice.

Spin Wait. In this bug pattern, a method executes a
loop which reads a non-volatile field until an expected value
is seen. Aside from the obvious waste of CPU time, there is
a more subtle issue. If the field is never assigned in the body
of the loop, the compiler may legally hoist the read out of
the loop entirely, resulting in an infinite loop. An example
of a spin loop is shown in Figure 5.

4. EVALUATION

Because the FindBugs tool uses heuristics, it may report
warnings that are not real errors. In order to evaluate the
accuracy of the warnings produced by the tool, we applied
it to several applications and libraries:

e rt.jar, from Sun JDK 1.5 beta build 42: this is Sun’s
implementation of the core J2SE libraries

e classpath-0.08: an open source implementation of a
subset of the core J2SE libraries from the GNU project

e jboss-4.0.0DR3: a popular open source application server

for Enterprise Java Beans

e JacORB-2.1: an open source implementation of a CORBA

Object Request Broker (ORB)

e International Children’s Digital Library 0.1: an early
version of a web-based digital library application from
the University of Maryland Human-Computer Interac-
tion Laboratory [9]

With the exception of ICDL, These are mature, production
quality applications and libraries. We manually classified
each warning as serious (a real bug), harmless (a bug un-
likely to cause incorrect behavior), and false (an inaccurate
warning). The results are shown in Table 1.

In evaluating the accuracy of the detectors, we tried to
err on the side of not marking a warning as serious unless
we felt confident that it could result in undesirable behavior
at runtime. For example, we marked some of the ‘Wait not
in loop’ warnings as harmless because they were used to
implement an infinite wait, so liveness was not an issue.®

3Interestingly, spurious wakeups will be allowed in the re-
vised Java memory model[15], meaning that an uncondi-

86

In general, the detectors achieved our target of no more
than 50% false and harmless warnings. Some detectors were
very accurate: for example, the warnings generated by the
Double Checked Locking detector were almost always accu-
rate. The Inconsistent Synchronization detector was some-
what less accurate, although still within the acceptable range,
especially considering that our tool operates without explicit
specifications of which classes and methods are intended to
be thread safe. The Unconditional Wait and Wait Not In
Loop detectors were less accurate than desired. However,
they produce only a small number of warnings, and genuine
instances of these bug patterns tend to be critical bugs that
can be very hard to debug.

4.1 Anecdotal Experience

This section describes some of our experience in applying
the FindBugs tool.

One of the applications we studied as we were develop-
ing FindBugs was an early version of the International Chil-
dren’s Digital Library [9]. In conversations with the authors,
we found out that they had spent several months tracking
down a threading bug. When we applied FindBugs to the
buggy version, it immediately found the problem. A similar
problem in a different version of the ICDL software is shown
in Figure 4.

4.1.1 Reporting Bugs Found by FindBugs

We have submitted some of the most serious bugs found
by our tool in the Java core libraries to Sun’s Java bug
database.

Using our detector for Two Lock Wait, we found a serious

potential deadlock in the com.sun.corba.se.impl.orb.0ORBImpl

class of Sun’s JDK 1.5 build 32. In the get_next_response()
method, two locks are held when wait is called. Only one
of these locks is released while the threads is waiting. The
thread can be notified by calling the notifyORB() method.
Unfortunately, before the notification can be performed, the
thread must obtain the lock still held by the thread awaiting
notification, resulting is deadlock. We reported the problem
to Sun, it was confirmed to be a bug, fixed internally, and
the fix is scheduled to be part of a future beta release.

In prerelese versions of Sun’s JDK 1.4.2, we found serious
inconsistent synchronization bugs in the append(boolean)
method of StringBuffer and the removeRange(int,int)
method of Vector. Both classes are meant to be thread-
safe, and these methods were left unsynchronized, result-
ing in exploitable race conditions. Even though these were
acknowledged to be genuine bugs by sources at Sun, the
removeRange error will only be fixed in the 1.5 branch, not
in the 1.4 branch of Java. This illustrates an interesting
asymmetry about the software engineering issues surround-
ing concurrency bugs in commercial software:

e [t is easy to introduce concurrency errors in new code
o [t is difficult to fix these bugs once they are introduced

The reason for the asymmetry is that maintenance engi-
neers are understandably reluctant to fix bugs which cannot
be easily reproduced with a simple test case.? Also, mainte-

tional call to wait () does not correctly implement an infinite
wait.

4An interesting problem here is that many concurrency er-
rors cannot be reliably reproduced by a test case.

rt-1.5-b42 classpath-0.08
warnings serious harmless false pos | warnings serious harmless false pos
Double check 78 92% 0% ™% 0 — — —
Lazy static initialization 146 100% 0% 0% 10 100% 0 % 0 %
Double check 78 92% 0% % 0 — — —
Inconsistent sync 204 56% 31% 11% 80 48% 30% 21%
Mutable lock 1 100% 0% 0% 0 — — —
Running, not starting a thread 1 0% 0% 100% 1 0% 0% 100%
Unconditional wait 4 0% 25% 75% 2 0% 0% 100%
Wait not in loop 6 0% 16% 83% 3 0% 0% 100%
jboss-4.0.0DR3 jacorb-2.1
warnings serious harmless false pos | warnings serious harmless false pos
Double check 5 80% 0% 20% 1 100% 0% 0%
Lazy static initialization 643 100% 0% 0% 579 100% 0% 0%
Inconsistent sync 54 37% 24% 38% 35 57% 17% 25%
Unconditional wait 3 66% 0% 33% 5 60% 0% 40%
Wait not in loop 4 0% 0% 100% 5 20% 0% 80%
icdl
warnings serious harmless false pos
Lazy static initialization 100% 0% 0%
Inconsistent sync 100% 0% 0%
Spin Wait 100% 0% 0%
Unconditional wait 66% 0% 33%
Wait not in loop 100% 0% 0%
Table 1: False positive rates for concurrent bug pattern detectors.
nance engineers must be concerned as to whether introduc- Number of
ing missing synchronization could possibly introduce dead- Bug Type Students
lock. Because concurrency errors are almost always difficult Inconsistent synchronization 7
to reproduce, they can linger for a long time without being Mutable Lock 1
fixed. This highlights the usefulness of running static tools Mismatched Wait /Notify 4
to catch bugs before they are introduced into a deployed Naked Notify 4
code base. Notify instead of NotifyAll 4
Running, not starting a thread 1
4.1.2 Finding Bugs in Student Projects Unconditional Wait 5
Any of the above 19

Programmers with different skill levels tend to make dif-
ferent kinds of mistakes. We found that bug detectors such
as Wait Not In Loop and Naked Notify did not find many
serious bugs in production quality software. However, these
detectors were very effective at finding bugs in projects writ-
ten by students in an undergraduate advanced Java pro-
gramming course; for many of the students, the course is
their first significant exposure to concurrent programming.

Table 2 shows, for a programming project (assigned when
we taught the course in Spring 2001) where students used
threads for the first time, the number of student projects
for which FindBugs reported various kinds of concurrency
warnings. Many of these bugs are ones that we would not
expect to see in production code. For example, Mismatched
Wait/Notify bugs manifest by throwing a runtime excep-
tion (specifically, I1legalMonitorStateException), which
should be diagnosed and fixed during testing. However,
since students do not always understand the meaning of
these exceptions, they may be tempted to ignore them, or
even write handlers for them. Because students do not un-
derstand threads well, these warnings typically indicate se-
rious errors in their code.

In recent semesters when we have taught the same course,

87

Table 2: Number of student projects in an un-
dergraduate advanced Java programming course for
which FindBugs generated various kinds of concur-
rency warnings.

we have given students access to both FindBugs and a dy-
namic data race detection tool, both of which have been suc-
cessful at helping students find and fix concurrency problems
in their projects. However, giving students access to these
tools has also made it more difficult for us evaluate the effec-
tiveness of FindBugs by applying it to submitted program-
ming assignments. We are working to develop infrastructure
that will allow us to record the effectiveness of FindBugs
as students develop code. Ensuring that FindBugs reports
problems in a way that enhances students’ understanding of
concurrency issues is something we are actively pursuing.

5. RELATED WORK

Static bug checkers have a long history. The original pro-

gram checker is Lint [16], which uses simple analyses to find
common errors in C programs. LCLint [12] is similar in
spirit to the original Lint, with the addition of checking code
for consistency with specifications supplied by the program-
mer. PREfix [7] symbolically executes C and C++ programs
to find a variety of dynamic errors, such as memory corrup-
tion and out of bound array accesses. MC (for “metacom-
pilation”) [10] uses a sophisticated interprocedural analysis
to check code over large numbers of paths through an entire
system; state machines driven by program statements are
used to check correctness properties on those paths. MC
uses a novel language, called Metal, to encode the state ma-
chines, allowing checks for new properties to be added easily.
The SABER project at IBM[14] uses an approach very simi-
lar to FindBugs in order to find errors in J2EE applications.

Many static bug checkers have focused on finding con-
currency errors in software. Warlock [21] checks variables
in multithreaded C programs to determine if they are pro-
tected by a consistent set of locks; accesses to variables with
an inconsistent lockset are flagged as potential race condi-
tions. JLint [3] performs an interprocedural analysis on Java
programs to find potential deadlocks and race conditions. In
[13], Flanagan and Qadeer describe a static analysis to find
methods that are not atomic; as noted earlier, programs free
of race conditions can still have atomicity bugs. RacerX [11]
is system for finding race conditions and deadlocks in C pro-
grams. Its analysis is very similar to that performed by MC;
however, some new analysis techniques are introduced, in-
cluding “unlockset” analysis, which can be thought of as
lockset analysis backward in time. Using unlocksets can
increase the confidence of reports for unsynchronized field
accesses over using locksets alone.

A variety of dynamic techniques and tools have been de-
veloped to help find and diagnose concurrency errors. Eraser
[20] dynamically computes the set of locks held during ac-
cesses to shared data. Accesses to the same location with
inconsistent lock sets are potential bugs. JProbe [17] dy-
namically monitors a running Java program to detect race
conditions and deadlocks.

6. CONCLUSIONS

From our studies of concurrency bugs, we conclude that
many programmers have fundamental misconceptions about
how to write correct programs using threads. The intuition
many programmers have about how multithreaded programs
ought to work is flawed. Some of this can be attributed to
inaccurate information (such as the books and articles advo-
cating double checked locking). Some can be attributed to
inadequate educations—threads and concurrency are gener-
ally considered only briefly in the undergraduate Computer
Science curriculum, with more in-depth treatment coming
only in electives. Finally, modern multiprocessor architec-
ture and aggressive optimizing compilers can lead to sur-
prising and subtle behaviors in multithreaded programs.

We believe that static checking tools can aid programmers
in two important ways. First, they can help find bugs in
software. Second, and perhaps more importantly, they can
help educate programmers about error-prone idioms arising
from misconceptions about threads and concurrency.

In future work, we would like to develop detectors for
other kinds of concurrency errors, and continue to improve
the accuracy of the existing detectors. We would also like
to evaluate the extent to which static tools can help inexpe-

88

rience programmers learn to use threads correctly.

7. ACKNOWLEDGMENTS

Some of the bug detectors implemented in FindBugs were
suggested by Doug Lea and Josh Bloch. We would like to
thank Jeremy Manson and Jaime Spacco for helpful feed-
back on this paper. Finally, we would like to thank the
anonymous reviewers for their insights and suggestions.

8. REFERENCES

[1] S. V. Adve and K. Gharachorloo. Shared memory
consistency models: A tutorial. IEEE Computer,
29(12):66—76, 1996.

[2] Phillip G. Armour. The five orders of ignorance.
Commun. ACM, 43(10):17-20, 2000.

[3] Cyrille Artho and Armin Biere. Applying static
analysis to large-scale, multi-threaded Java. In
Proceedings of the 13th Australian Software
Engineering Conference, pages 68-75, August 2001.

[4] David F. Bacon, Ravi Konuru, Chet Murthy, and
Mauricio Serrano. Thin locks: featherweight
synchronization for Java. In Proceedings of the ACM
SIGPLAN 1998 conference on Programming language
design and implementation, pages 258-268. ACM
Press, 1998.

[5] David F. Bacon, Robert E. Strom, and Ashis
Tarafdar. Guava: a dialect of Java without data races.
In Proceedings of the 15th ACM SIGPLAN conference
on Object-oriented programming, systems, languages,
and applications, pages 382-400. ACM Press, 2000.

[6] Chandrasekhar Boyapati, Robert Lee, and Martin
Rinard. Ownership types for safe programming:
preventing data races and deadlocks. In Proceedings of
the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 211-230. ACM Press, 2002.

[7] William R. Bush, Jonathan D. Pincus, and David J.
Sielaff. A Static Analyzer for Finding Dynamic
Programming Errors. Software—Practice and
FExperience, 30:775-802, 2000.

[8] The “double-checked locking is broken” declaration.
http://www.cs.umd.edu/users/pugh/java/
memoryModel/DoubleCheckedLocking.html.

[9] A. Druin, Ben Bederson, A. Weeks, A. Farber,

J. Grosjean, M.L. Guha, J.P. Hourcade, J. Lee,

S. Liao, K. Reuter, A. Rose, Y. Takayama, L., and

L Zhang. The international children’s digital library:
Description and analysis of first use. Technical Report
HCIL-2003-02, Human-Computer Interaction Lab,
Univ. of Maryland, January 2003.

[10] D. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking System Rules Using System-Specific,
Programmer-Written Compiler Extensions. In
Proceedings of the Fourth Symposium on Operating
Systems Design and Implementation, San Diego, CA,
October 2000.

[11] Dawson Engler and Ken Ashcraft. RacerX: effective,
static detection of race conditions and deadlocks. In
Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 237-252, 2003.

[12] David Evans, John Guttag, James Horning, and
Yang Meng Tan. LCLint: A tool for using

19

120

21

]

]

specifications to check code. In Proceedings of the
ACM SIGSOFT ’94 Symposium on the Foundations of
Software Engineering, pages 87-96, 1994.

Cormac Flanagan and Shaz Qadeer. A type and effect
system for atomicity. In Proceedings of the ACM
SIGPLAN 2003 conference on Programming language
design and implementation, pages 338—-349, 2003.
J2EE Code Validation Preview for WebSphere Studio.
http://www-106.ibm.com/developerworks/websphere/
downloads/j2ee_code_validation.html.

Java Specification Request (JSR) 133. Java memory
model and thread specification revision, 2004.
http://jcp.org/jsr/detail /133.jsp.

S. Johnson. Lint, a C Program Checker, Unix
Programmer’s Manual, AT&T Bell Laboratories, 1978.
Quest Software — JProbe Threadalyzer.
http://www.quest.com/threadalyzer.jsp.

Kiyokuni Kawachiya, Akira Koseki, and Tamiya
Onodera. Lock reservation: Java locks can mostly do
without atomic operations. In Proceedings of the 17th
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 130-141. ACM Press, 2002.

John K. Ousterhout. Why threads are a bad idea (for
most purposes). Invited talk, USENIX 1996 Technical
Conference.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A
dynamic data race detector for multithreaded
programs. ACM Transactions on Computer Systems,
15(4):391-411, 1997.

Nicholas Sterling. WARLOCK: A Static Data Race
Analysis Tool. In Proceedings of the USENIX Winter
Technical Conference, pages 97-106, January 1993.

89

Observations on the Assured Evolution of
Concurrent Java Programs

Aaron Greenhouse
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213

aarong@sei.cmu.edu

ABSTRACT

Evolving and refactoring concurrent Java software can be
error-prone, resulting in race conditions and other concur-
rency difficulties. We suggest that there are two principal
causes: Concurrency design intent is often not explicit in
code and, additionally, consistency of intent and code cannot
easily be established through either testing or inspection.

We explore several aspects of this issue in this paper.
First, we describe a tool-assisted approach to modeling and
assurance for concurrent programs. Second, we give an ac-
count of recent case-study experience on larger-scale pro-
duction Java systems. Third, we suggest an approach to
scalable co-evolution of code and models that is designed
to support working programmers without special training
or incentives. Fourth, we propose some concurrency-related
refactorings that, with suitable analysis and tool support,
can potentially offer assurances of soundness.

1. INTRODUCTION

Reasoning about concurrent Java programs is a challenge
for both programmers and software tool designers. Evolving
concurrent programs can be even a greater challenge. De-
velopers must constantly raise and address questions such
as: What data is shared by multiple threads? Is it accessed
safely? What locks should be held when particular portions
of shared state are accessed? Whose responsibility is it to
acquire the lock? Is this delegate object uniquely referenced
by its referring object?

Two questions. These bread-and-butter development
questions are instances of two kinds of general questions:

The first question is what is the concurrency-related de-
sign intent. An example of design intent is the association
of lock objects with particular regions of shared state.

Developers rely on conventions, for example, that an ob-
ject is used as a lock for its own state, and takes care of
its own locking. These conventions are, however, not uni-
versally applicable and must sometimes be breached. For
example, the lock of a pool object may protect the state of
the pool object itself plus just those portions of the state of
pooled objects that represents the backbone of the linked list
of the objects in the pool. Another example is the use of a
lock of a referring object to protect the state of uniquely ref-
erenced delegate objects, particularly arrays. This is typical
in event queue representations. Another issue is who has
respounsibility for lock acquisition. There are many cases

T. J. Halloran
School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

thallora@cs.cmu.edu

90

William L. Scherlis
School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

wlis@cs.cmu.edu

where a client of a shared object is meant to be responsible
for acquiring and releasing locks—this is particularly useful
when a lock must be held over a sequence of method calls.

Another example of design intent is the decision, typical
in GUI frameworks, to follow a single-thread policy to pro-
tect the integrity of shared data. APIs often have threading
policies associated with them: the Java AWT, for example,
has certain rules regarding the appropriate use of its event
thread to support non-lock concurrency. These rules include
restrictions on which threads may invoke callback method
definitions.

The second question is whether there is consistency be-
tween code and the stated design intent. An example of con-
sistency for a lock-based model is an assurance that the cor-
rect lock is always acquired prior to accessing shared state
[16, 13]. For non-lock concurrency, the assurance pertains to
the identity of thread that touch critical state [22]. Failures
to achieve consistency thus reflect either flaws in the model,
or flaws in the code, or inadequacy of the verification and
analysis tools.

Adoptability and scalability. Answering these ques-
tions, particularly in the case of fast-paced iterative develop-
ments, is highly problematic. While programmers may com-
municate design intent informally among themselves, there
is relatively little success in capturing intent in a sufficiently
precise representation that tools can be used to assist in as-
sessing consistency. The high “expression cost” creates an
effective adoption barrier, and the well known difficulties in
general-purpose assurance for larger systems create an effec-
tive scaling barrier.

These perceptions are generally well founded: both the
expression of model information and the assurance of its
consistency with the code present an overwhelming barrier
to entry for routine Java programming and any kind of for-
mal assurance approach is suitable only for critical systems
at small scale. There has been recent experience, however,
in both modeling and assurance that suggests the possibility
that both of these barriers can be removed in a wide range
of interesting cases [2].

We present here an approach to concurrency-related as-
surance and evolution that is designed with these as the prin-
cipal challenges. We do this by titrating back on inferential
and expressive power to achieve goals related to adoptabil-
ity by working programmers and scalability to subsystems
of realistic size.

In this paper, we present our approach to modeling and

reasoning about Java concurrency. We identify the specific
limits we accept on expressiveness and power to achieve this.
For example, rather than requiring a programmer to express
and verify full representation invariants for data structures,
we instead substitute a model of “guilt-by-association,” in
which those constituents of shared state are merely associ-
ated with each other into “regions” [16, 14]. Race condi-
tions, by definition, occur when a representation invariant
is expected to hold at a place where it in fact does not due
to the interleaved execution of a separate thread. In our ap-
proach, we focus on identifying the constituents of state that
might be related by a putative invariant, but not elucidating
their relationship. The hypothesis underlying this approach
is that modeling at this level of abstraction is sufficient for
the purposes of establishing safe concurrency. This has been
reinforced through extensive case study experience.

Java concurrency. One of the challenges in modeling
and reasoning about concurrency is that most interesting
concurrency-related properties defy both traditional testing
and inspection techniques. There is no single place in the
code to look to find either expression of model information or
evidence of compliance. In particular, the reasoning process
to ensure comnsistency of code and model is almost always
non-local in the structure of the code. This raises a chal-
lenge for programmers attempting to accomplish informal
reverse engineering—often of their own code—and also for
tool developers seeking to assist in evolving and assuring
concurrent Java programs. Assuring programs, in this case,
means establishing consistency between the code and con-
currency design intent, as noted above. This implies that
the model of intent must somehow be expressed.

Approach and prior work. This paper addresses these
challenges. Our approach has four elements: (1) The incre-
mental expression of “mechanical” design intent (what some
call “non-functional” requirements) for Java concurrency,
(2) An incremental and composable approach to analysis-
based assurance of consistency of that intent with code, and
(3) Support for rapid iteration in the co-evolution of code
and design intent, including (4) Support for semi-automated
refactorings.

Underlying this approach is a tool based on a suite of
composable semantic program analyses supported by a com-
plex assertion- and proof-management scheme that supports
composition and incrementality.

‘We have previously described some results that contribute
to elements (1) and (2) of our approach above—expressing
design intent that enables programmers to capture model
information in a way that enables assured consistency be-
tween the expressed design intent and code [7, 6, 14, 16, 22,
13]. In this paper we summarize recent experience regarding
these first two elements, and offer some potential directions
for addressing elements (3) and (4). This builds on extensive
case study experience using our Eclipse-based tool.

Practicability. Our overall approach is designed from
the outset to be practicable—feasibly adoptable by real pro-
grammers working on deadline. One of the lessons we have
learned is that considerations of practicability have a sig-
nificant influence on every aspect of the approach, includ-
ing even the design of underlying analysis algorithms—for
example, to support component composition, explicit cut-
points, programmer debugging, interactions among analy-
ses, etc.

There is also a perception, which is also generally well

91

founded, that assurance raises a formidable barrier to evo-
lution of code/models. This includes manual evolution of
code and models as well as the means by which their con-
sistency can be managed. It is important to recognize that
in production development efforts consistency is almost al-
ways partial, as are the associated models. That is, pro-
grammers must therefore be able, incrementally, to accrete
model information, to reason about models and code, and to
evolve both models and code. This evolution can be entirely
manual or it can be tool assisted, as in the semi-automated
refactorings implemented in tools such as Eclipse.
Our approach to practicability is based on three key prin-
ciples:
1. Incrementality and early gratification. Any increment
of effort we ask programmers to undertake should yield
a generally immediate reward in the form of bug find-
ing, assurance creation, guidance in evolution, or model
expression. The intent is that useful assurances can be
obtained with minimal or no annotation effort, and ad-
ditional increments of annotation yield additional in-
crements of assurance. This is one of the reasons why
we have avoided any requirement for explicit expres-
sion of representation invariants.

2. Familiar expression. Properties should be expressed
tersely and using terminology already familiar to pro-
grammers. We cannot require programmers on dead-
line to become expert in unfamiliar verification for-
malisms. This is a challenge, because representation
invariants underly the semantic distinction between
races and desired concurrency. Generally, our more
abstract proxies have proven to be sufficient.

3. Cut points and composability. We should be able to
handle individual components separately from each
other, developing composable assurances, which can
be linked together to form “chains of evidence” sup-
porting an overall system-level claim. There are two
challenges: First, can cutpoints be expressed in a way
that satisfies the first two principles above. And, sec-
ond, can the analyses be accomplished without exces-
sive conservatism—that is, can useful analysis results
be obtained for a broad range of existing Java code.

Refactoring. Rapid development iteration is increas-
ingly a tool-supported activity, with tools used to assist
in restructuring or refactoring of code. Refactorings are
systematic plans for transforming source code, generally in
ways that preserve behavior. For example, one kind of refac-
toring is the extraction of a new abstract superclass from
two similar classes—without changing the behavior of the
program. This refactoring can eliminate redundancy and
improve ability to understand and evolve the program. An-
other example of a refactoring is extraction of a new method
definition from one or more existing method definitions.
This can involve subtle reorderings of computation, for ex-
ample, of the code “left behind” at the call site to calculate
values of actual parameters.

Refactoring is a challenge from the standpoint of bug-
prevention and program assurance. If one starts with a cor-
rect (assured) program with respect to a set of models, then
the refactored program should still be correct after applying
the refactoring. This is particularly important when refac-
toring results in broad structural changes. This means that
refactorings may have associated soundness preconditions.

A use of refactoring is to make programs easier to under-

stand by making intent more self-evident. Programs thus
become safer to evolve [12]. There is an unfortunate irony:
the refactoring process can itself be unsafe. When sound-
ness preconditions are not identified or cannot be assured,
for example, due to the lack of models, both automated and
manual refactoring can be risky. Refactorings implemented
in tools may be unsound, particularly with respect to con-
currency and other non-local program attributes.

Determining whether the program satisfies the precondi-
tions for a refactoring rule may require explicit knowledge
of non-local design intent: e.g., What state might be read or
written by this method? Is this field aliased? Is this class
intended to be subclassed? Who are the clients of this class?
[19, 21]. Best practice for manual refactoring is generally
considered to require explicit reverse engineering, possibly
using programming tools to search program text, and then
applying a refactoring either by manually manipulating pro-
gram text or using a tool [12]. Most automated refactorings
will result in compilable code. But this is not sufficient to
guarantee that program behavior is preserved.

Indeed, it appears that there is a kind of pragmatic trade-
off between soundness and “manipulative power” evident in
the present generation of tool-implemented refactorings. If
S0, increments in our ability to assure soundness of refac-
torings could have a significant impact on the range and
sophistication of transformations available through main-
stream code development tools.

1.1 Outline

In this paper we (1) summarize our approach to tool-
assisted modeling and assurance for concurrent programs,
and (2) provide an account of recent case-study experience
on larger-scale production Java systems such as jEdit, Log4J,
util.concurrent (a widely used concurrency library), as well
as several commercial and government systems. We then
(3) offer an approach to principled co-evolution of code and
models that is intended to meet the practicability criteria
above, and (4) propose some concurrency-related refactor-
ings that, on the basis of models and analyses, can be im-
plemented soundly in tools. Because models are integral to
our approach, it is important to avoid any requirement for
programmers to reinvent models after restructuring code.
Therefore, in our approach to refactoring, code and models
are manipulated simultaneously. The intent of this approach
is to enable a more powerful generation of refactorings, in-
cluding refactorings whose purpose is to assist developers in
making effective use of concurrency.

2. OUR ASSURANCE TOOL

We have implemented a prototype tool, sketched in [15],
within the Eclipse IDE. This seemingly benign plug-in em-
bodies the program analysis and assurance techniques de-
scribed in previous work [14, 6, 16, 13]. It has its own in-
ternal representation that supports a variety of views and
analyses, detailed below. We have applied this prototype
tool to a number of mid-scale production concurrent Java
programs, and have had success in recovering and captur-
ing portions of concurrency-related design intent for these
systems. The tool provides both bad news and good news:
We have uncovered a number of previously unknown con-
currency errors, and we have provided analytic assurances
regarding consistency of code and models. In this section,
we provide a brief overview of the capabilities of our tool,

92

describe programmer interaction with our tool, and report
on case study experience with our tool.

2.1 Tool Capability

Programmers using our tool record design intent in terms
of properties the programmer is usually already concerned
with. Models of design intent are expressed as source-code
program annotations in a format familiar to users of Javadoc
and JML. A design goal is for each annotation to provide
some immediate value by answering a question about the
code. This is a crude incentive system: Working program-
mers on deadline should want to introduce annotations be-
cause they receive near-immediate benefits that are useful to
ongoing development activity—as well as to overall quality
assurance of the evolving system.

Our tool allows analysis to proceed in increments across
the code base and associated models. An unannotated class
is merely a class that has no models against which it can be
verified. Unannotated Java code is not somehow wrong; it
just lacks claims of consistency with design intent. There
are tools, including RACEFREEJAVA [11] and Guava [1] that
can assist in providing assurance of thread safety. But these
tools generally require the entire program to be assured
thread-safe at once. While the modular type systems they
use allow the program to be analyzed on a per-class basis,
they nonetheless require the whole program to be annotated
before meaningful analysis can be performed.

Our annotations for expressing design intent and their
associated analyses can be categorized as follows:

o Aggregations of state. These declarations enable a
programmer to declare abstract hierarchical “regions”
of state that can both subdivide and span across ob-
jects. These state models can exploit uniqueness of ref-
erences to aggregate uniquely referenced objects into
the state of other objects.

e Effects. A programmer can declare the upper bounds
of a method’s effects—the state it reads and writes—in
terms of regions. Analysis can verify that implementa-
tions respect the declarations and suggest appropriate
declarations for unannotated methods [14, 13].

e Aliasing intent. These declarations enable a pro-
grammer to declare that a field or return value is in-
tended to be unaliased. Parameters that are not aliased
by methods can also be declared and verified [6].

e Locking intent. These declarations enable program-
mers to declare models that associate locks with state.
Analyses can verify that state is accessed only when
the appropriate lock is held [16, 13]. These annota-
tions use the models of state provided by regions. In
addition, the programmer can declare that a method
requires a particular lock to be held by the caller, and
can declare that a method returns a particular lock.

e Concurrency policy. These declarations enable iden-
tification of methods that may be safely executed con-
currently [16, 13]. In general, the programmer declares
which methods have safe interleavings based on their
critical sections. We hypothesize that, for lock-based
concurrency, concurrency policy combined with mod-
els of locking intent is a suitable surrogate for repre-
sentation invariants.

e Thread identification. These declarations provide
a way to associate particular threads with code seg-

BEX

= Java - Logger.java - Eclipse Platform

File Edit Mavigate Project Window Help
il = - B | &loava
4] Logger java &3 O
~ public void setFilcer (Filcer :etr.-'F'_'_te::A:E
if (!anonvmous)
manager.checkhccess () ;
filter = newFilter;
} al
a 2]
[Code Assurance Information 52 i v =040
] @ Concurrency detector (1 issue) [

+- 1 1jsva.lang Thread subtype instance creation(s)
= El? Lock Assurance {157 issues)
@lock ErrorMamager.Locallock at ErrorManager.java line 21 (2 iss
@lock FileHandler FLlock at FileHandler java line 103 (3 issues)
@lock Formatter.FormatLock at Formatter.java line 25 (10 issues)
@lock Handler LevelLock at Handler java line 29 (2 issues)
@lock Level.KnownLock at Level java line 44 (16 issues)
@lock LogManager.Lock at LogManager.java line 114 (24 issues)
Block LogRecord.IDLock at LogRecord.java line 49 (4 issues)
% @lock Logger.FilterLock at Logger java line 147 (4 issues)
+-dp 2 protected field access(es)
= 9% |2 unprotected field access{es); possible race condition detectedl |
-1z java.util.logging (2 issues)
-1} java.util.logging (2 issues)
- @ Logger.java (2 issues)

® line 397: [Logger.FilterLock] Lock "<this; >.Log

® line 406: [Logger FilterLock] Lock "<this; =.Log
+ % Zlock Logger.Treelock st Logger.java line 145 {23 issues)
+- § 39 protected reference(s) to a possibly shared unprotected cbject
+- § 21 synchronized blocks not protecting any state; what state is beir|a |

<] B

¥

i S i i i i]

T[] -

wiritable

Figure 1: Our prototype concurrency assurance tool

ments and regions of state [22]. We do not elaborate
these ideas here in this paper, except to note that this
provides an approach to management of the non-lock
concurrency typical of GUIs, as well as support for
static assurances regarding appropriate use of threads
in real-time Java code [5].

These models of design intent have been sufficient to cap-
ture the majority of Java concurrent programming idioms
we have encountered in a broad sampling of production sys-
tems, including both commercial code and widely-adopted
(high-quality) open source code. But these models are not
sufficient to capture all concurrency design patterns. For ex-
ample, we presently do not model and reason about thread-
local objects, and we cannot yet describe designs that use
arrays of locks or other indirect means of referring to locks.

2.2 Programmer-Tool Interaction

Figure 1 shows a portion of the user interface of our pro-
totype Eclipse-based tool. The programmer enters annota-
tions (examples of which are provided below) within his or
her code using the normal Eclipse Java editor. As soon as a
compilation unit containing annotations is saved, a build is
done, analyses are executed, and tool results are displayed.

93

System | kSLOC | Annotations

jEdit v4.1 72.3 36
log4j v1.2.8 19.8 43
util.concurrent v1.3.2 10.3 158
util.logging v1.4.1.01 2.3 45
Sponsor program 7.4 12

Table 1: Programs used as case studies.

Our tool, similar to the Eclipse Java compiler, is incremental
and runs in the background while the programmer contin-
ues his or her work. Thus, the tool unobtrusively monitors
model-code consistency as a programmer works on code and
provides quick feedback as a programmer works to express
models. Generally speaking, the time to complete the analy-
ses is a function of the number of models and the complexity
of the code they are associated with.

The results window shown at the bottom of Figure 1 re-
ports model-code assurance results with a green “+” to
indicate consistency and a red “x” to indicate inconsis-
tency. A blue “i” highlights potential next steps for the
programmer—inferred from the existing code and models.
For example, the bottom “i” result in Figure 1 highlights
21 cases where locks that have not been explicitly associ-
ated, via a model, with lock-protected state are used within
segments of code. Because these “i” results, like any in-
ference not based upon explicit design intent, are subject
to false positives, they can be filtered out by toggling the
blue “i” button in the upper right of the “Code Assurance
Information” window. The lower right corner of the model
icons indicate the overall status of verification with respect
to that model.

2.3 Tool Experience

We have applied our tool to a number of concurrent Java
programs from established open source projects as well as
industry and government systems. We elaborate four exam-
ples below: java.util.logging, the Apache Jakarta Log4j li-
brary, the open source text editor jEdit*, and the well known
concurrency utilities package util.concurrent.? In most of
the systems we examined we both uncovered race conditions
and obtained many positive results. The positive results are
in the form of captured design intent coupled with analyses
that verify consistency of code with the models.

The size and number of annotations added to each pro-
gram discussed below are shown in Table 1. Our first exam-
ple illustrates the kinds of errors well-intentioned developers
can make in evolving a class definition with a non-trivial and
unstated concurrency model.

2.3.1 Case Sudy: Log4j’s BoundedFIFo

Our annotation language, similar to Javadoc and JML, is
described in detail in [16, 13]. We introduce our technique
here using the BoundedFIF0 class, which implements a shared
buffer between two threads, taken from the Apache Jakarta
Log4j source code.® Log4j is a widely adopted library for

'http://www.jedit.org/. Bugs 893519 and 893735.
*nttp://gee.cs.oswego.edu/dl/classes/EDU/oswego/
cs/dl/util/concurrent/intro.html.
3http://logging.apache.org/logdj/docs/index . html.
Log4j is (©1999 Apache Software Foundation.

event logging within Java programs (with capabilities sim-
ilar to its SDK successor java.util.logging). Consider the
annotated and elided code fragment below:

1 /**% Q@lock BufLock is this protects Instance */
2 public class BoundedFIFO { ...

s /*x Qaggregate [] into Instance

4 * Qunshared */

5 LoggingEvent[] buf;

6 int numElts = 0, first = 0, next = 0, size;
4

8

9

/** @singleThreaded
* @borrowed this */
10 public BoundedFIF0(int size) {...}

12 /** QrequiresLock BufLock */
13 public LoggingEvent get() {...}

15 /** QrequiresLock BufLock */
16 public void put(LoggingEvent o) {...}

18 public synchronized void resize(int newSize)

19 }

Recall that Java has no way to express the association
of locks with shared state, though there are conventions.
The @lock annotation on line 1 declares that the BoundedFIF0
object instance, this, is intended to protect all the object’s
fields. Specifically, this @lock annotation declares that the
region Instance is protected by the object referenced by this.
The lock is given a name, BufLock, because the object may
otherwise be anonymous. The region Instance is a default
region declared in Object and is automatically populated
with the instance fields. Fields may alternatively have an
explicit parent region declared via @mapInto (an example use
is in a separate example below).

The @requiresLock annotation on lines 12 and 15 indi-
cates that holding a lock on the BoundedFIFO object (e.g.,
synchronized (fifo) { e = fifo.get(); })isintended.to be
a prerequisite for callers invoking these methods. The con-
tents of the buffer are actually a separate object, the ar-
ray buf. Lines 3 and 4 aggregate the elements of buf into
the state of the BoundedFIFQ object instance. They also de-
clare that references to the array are not “leaked” to other
objects within the program—that the only references are
from within the BoundedFIF0 object. Leakage may also oc-
cur from constructors. Line 8 declares that during construc-
tion, the new object is only accessed by a single thread, i.e.,
the one that invoked the constructor. Knowing this, our
tool does not have to enforce the use of a locking proto-
col within the constructor’s implementation. Finally, line
9 declares that the constructor does not “leak” a reference
to the object itself; this is used to assure the consistency
of the @singleThreaded annotation. On the basis of this
model, our tool provides an assurance of consistency of code
and model. Multiple program analyses contribute to this,
including binding, typing, unique references (a specialized
alias analysis), may-equal (another specialized alias analy-
sis), effects, and our special-purpose lock analysis.

Between versions 1.0.4 and 1.1bl of Log4j, a resize()
method, declared on line 18 above, was added to enable
resizing of the buffer. Unlike the other methods in the class,
resize() is synchronized. Our tool assures the safety of this
new method without new annotation. (As an aside, we note
that introducing this method led to a policy failure relating
to the use a wait—notify protocol—see our reports in Apache
bugs 1505, 1507, 23912, and 26224.)

232 CaseSudy java.util.logging.Logger

The class java.util.logging.Logger was introduced in Java
2 SDK version 1.4, and was designed for multi-threading.
The JavaDoc claims that “All methods on Logger are multi-
thread safe.” We introduced a single annotation to express
the locking model.

/*x @lock FilterLock is this protects filter */
public class Logger { ...
private Filter filter;

throws SecurityException {
if (!anonymous) manager.checkAccess();

1
2
3
4
5 public void setFilter(Filter newFilter)
6
7
8 filter = newFilter;

9

}
10
1 public void log(LogRecord record) { ...
12 synchronized (this) {
13 if (filter != null && !filter.isLoggable(record))
14 return;
15 }
6 F
17 }

The tool fails to establish assurance because method set-
Filter does not acquire FilterLock before writing to field
filter. This enables a race with the log method in which
log checks that filter is non-null, setFilter writes null to
filter and then log dereferences the now-null filter result-
ing in an exception. This example highlights the non-local
character of concurrent programming that makes it so dif-
ficult to debug: even though log is written correctly, it is
compromised by the incorrect setFilter method. The race
can be fixed by enclosing the assignment to filter at line
8 above within a synchronized (this) block (see Java Bug
Parade ID 4779253).

2.3.3 Case Study: Wrong lock

Many classes maintain static fields and methods to sup-
port unique identification of instance objects. Here is a code
pattern based on code from a corporate partner:

public class C { ...
private static int nextID = 0;
private int id;

private synchronized void assignID() {

1
2
3
4
5 protected C() { assignID(); }
6
7
8 id = nextID++;

9

}
10 }

In our reverse engineering process, we first attempted to
model the policy using an instance lock to protect the field
id:

Q@lock IdLock is this protects id
We inferred this from the lock used in the code above. The
tool informed that none of the other (many) uses of the field
id were protected by this lock. We concluded (1) the actual
state protected by IdLock is the static field nextID, and (2)
that state should actually be protected by locking on the
class € rather than on the diversity of instances:

1 /** Q@lock IdLock is class protects nextID */
2 public class C { ...
3 private static int nextID = 0;

94

© ® N & o s

11

® N e m oA W N =

= R N P O

private int id;
protected MemoryType() { id = getNextID(); }

private static synchronized int getNextID() {
return nextID++;
}
¥

2.3.4 Case Sudy: Util.concurrent

The util.concurrent library contains a set of sophisticated
synchronized wrapper classes for scalar types that addition-
ally include suites of common operations that are meant to
be atomic. We investigated this library with our tool. So
far, we have developed 21 models within this library, and
we have been able to provide positive assurance for all but
two of these. One of the two exploits subtleties of the Java
Memory Model and is beyond the present capabilities of the
tool. The other model is, in fact, not consistent with code
due to a subtle race condition detected by our tool.

This model involves the class SynchronizedVariable and its
subclasses SynchronizedInt, SynchronizedLong, Synchronized-
Float, etc.

We expressed our model by adding region and lock decla-
rations to SynchronizedVariable.

/**

* Qregion public Value

* Qlock Lock is lock_ protects Value
*/

public class SynchronizedVariable {
protected final Object lock_;

}

The new region Value has no state in SynchronizedVariable;
the intent is that it apply to subregions added by the various
subclasses. Each subclass declares a field value_, for which
we add the design intent that it is part of the region value.
For example:

public class SynchronizedChar

extends SynchronizedVariable implements ... {
/** @mapInto Value */
protected char value_;

In version 1.3.2 of the library, the class SynchronizedLong
fails to assure because there is an unprotected access to long
value_ at the end of the method swap() (code is not shown
here). In general, even simple getters may require locks to
be held to ensure that inappropriate intermediate values are
not returned (though there are exceptions to this rule). In
the specific case of 64-bit primitive types, a simultaneous
access can yield a bad value because two separate 32-bit
accesses are used needed to retrieve the composite value.
A minor code change, now part of the current version of
the library, allowed us to assure consistency of the code and
model. (The lock was correctly held in the code for the other
64-bit primitive type, SynchronizedDouble.)

2.3.5 Case Sudy: jEdit

The jEdit project is an open source programmer’s text ed-
itor. It contains a class BufferListSet that has a field files
referencing an array of Strings. Our reverse engineering sug-
gested that the lock policy was for access to both files and

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

22

95

the array it references to be protected by the BufferListSet
object. We expressed the model as follows:

[**

* Q@region protected FilesList

* @lock FilesLock is this protects FilesList
*/

public abstract class BufferListSet
implements SearchFileSet { ...

/** Q@return {Quniquel} */
public synchronized Stringl[]
getFiles(View view) { ... }

VAL

* @mapInto FilesList

* Qunshared

* Qaggregate [] into FilesList
*/

private String[] files;

public void invalidateCachedList() {
files = null;
}
¥

These annotations create (at line 2) a region named Files-
List that includes the field files (line 13). The locking pol-
icy (line 3) states that FilesList is protected by locking the
object instance. The array (line 14) referenced by field files
is made part of the region FilesList (line 15). In our model
we note that it is uniquely referenced, i.e., unaliased. The
@return {Cunique} annotation (line 8) indicates that there is
no retained reference to the value returned.

Because method invalidateCachedList iS not synchronized,
verification fails. This can cause a NullPointerException be-
cause it could set files to null after another method has
checked for the fact that the field is non-null. (Details in
jEdit Bug 893735.)

From the standpoint of evolution, it is interesting to note
that in this example and the Log4j example described above,
the problems were introduced when new methods (in this
case, invalidateCachedList) were added to a class during
evolution, when developers might not have had an accurate
memory of original design intent.*

2.3.6 Discussion

We have found that attempts to fix seemingly simple ver-
ification failures often reveal deeper issues. For example, a
single negative result, when coupled with numerous related
positive verification results, can reveal inconsistencies in the
design intent embodied in the code. This experience is simi-
lar to that of Hovemeyer and Pugh in [17], where they report
that bug pattern detectors often serve as “confusion detec-
tors.” Simple examples of such situations are when a field is
only sometimes accessed from a critical section, or when one
lock is used sometimes to protect one field and other times
another. (There are safe—i.e., race-free—ways to use these
patterns, further complicating the issue.) A more complex
example comes from another production system: the object
used as a lock to protect a mutable field £ is the object ref-
erenced by £. Thus, the lock on the field changes with the
value of the field, which was not the intent.

“We learned this by examining the change logs of the classes.

Trust | Modify | Scenario

Model Model Evolved Model

Model Code Assured Evolution of Code
Code Model Reverse-Engineered Model

Code Code Assured Evolution of Intent

Table 2: Model-code evolution scenarios.

3. CO-EVOLVING CODE AND MODELS

Assurance of the consistency between design intent and
code can fail for several reasons. Most obviously: (1) there
are errors in the source code—a bug in the program—or (2)
there are errors in the models of design intent—bugs in the
model or its expression as program annotation. Consistency
can be restored in the first case by correcting the code and
in second case by correcting the model. There are two ad-
ditional reasons: (3) the analysis capability is insufficiently
powerful to verify consistency, and (4) it is not possible to
achieve consistency between model and code (i.e., produce
a safe i.e., race-free program) without modifying both.

Based on our experience with our tool, we have identified
four evolution scenarios corresponding to the cross product
of whether the programmer a priori trusts the model or the
code and whether the programmer modifies the model or the
code: see Table 2. We now discuss how our tool can assist a
programmer to reestablish code—model consistency in each
scenario. Underlying this discussion is the recognition that
the reality of the process is an ongoing coevolution of code
and design intent, which consists of many steps of the four
kinds considered here.

3.1 Evolved Model

In this scenario, the programmer both trusts and modifies
the model. Negative analysis results identify segments of
code that need to be modified to establish conformance with
the new model. For example, we might decide that instances
of BoundedFIFQ (above) should be protected by the object
referenced by a new field lock instead of by this. We would
update the model by changing its @lock annotation to be

@lock BufLock is lock protects Instance
and by adding a new field to the class:

public final Object lock = new Ubject();5
In fact, our first step could be to alter the annotation alone:
assurance would identify that no field named lock exists.
We would thus be guided on how to restore consistency.

Once the new lock model with the new representation
of BufLock is declared, our tool will identify all known call
sites of the methods put and get as being inconsistent with
the methods’ preconditions, and will identify all uses of the
class’s fields within synchronized method resize as being
unprotected. We already know what must be done to re-
store consistency—because we have deliberately changed the
model—but we may not have known where in the code to im-
plement the new model. Here, the tool results conveniently
focus our attention to exactly those synchronized blocks that
need to be updated.

3.2 Assured Evolution of Code

SWe make the field public to ensure that it is visible to the
clients of the object. Were we to make the field less visible,
our assurance tool would force us to introduce a public “lock
getter” method into the class.

96

Consider now the case where a programmer trusts the
design intent and modifies the code, with intent to main-
tain consistency with the model. In general, this scenario
describes program implementation and maintenance. It is
during these activities that the programmer can inadver-
tently introduce bugs while introducing new functionality
or, even worse, fixing existing bugs. Using our tool, how-
ever, analysis results would indicate whether the program-
mer successfully maintained consistency and, perhaps more
usually, focus attention to segments of code where consis-
tency is lost, e.g., identifying a potential data race or other
bug. Consider again the jEdit example introduced in Sec-
tion 2.3.5 in which the addition of a new method introduced
a race condition. Use of our techniques could have refocused
the programmer’s attention from extending functionality to
compliance with the locking model.

3.3 Reverse-Engineered Model

When the programmer trusts the code and changes the
model, he is essentially reverse engineering the code to evolve
the model to more accurately describe the implementation
reality. Addition of model information, e.g., by adding an-
notations to code, amounts to hypothesizing a model with
which the code might be consistent. Analysis tests this hy-
pothesis. To illustrate, consider the case where a field £ is
accessed from many synchronized methods. The program-
mer might hypothesize that the field is protected by the
object itself, and thus annotate the containing class with

Q@lock FLock is this protects f

Analysis might indicate that a majority of the uses of f are
protected under this model, while several of them are not.
Suppose further that the negatively assured cases all occur
within private methods that are called from synchronized
methods. The programmer can improve the model by an-
notating those private methods with @requiresLock FLock,
declaring the intent that callers should acquire the lock.

3.4 Assured Evolution of Intent

In the fourth scenario, the programmer both trusts and
modifies the code—deliberately changing the design intent
embodied in the code. Analysis assists by identifying code
segments that are inconsistent with the old model, and thus
implicitly identifying segments of the old model that need to
be updated. Furthermore, because the tool basically identi-
fies the segments of code that have changed, the programmer
knows where to look in the code for manifestations of the
new evolved model. This scenario is the dual to the “evolved
model” scenario: in the later case the model is evolved and
then the code is evolved to ensure consistency; in this case
the code is first evolved and then the model is evolved to
restore consistency.

Consider again the case of changing the lock that protects
an instance of class BoundedFIF0. Suppose we first changed
the code by introducing the new field and modifying the
synchronized blocks and declarations as appropriate. Nega-
tive analysis results would point to the callsites of put and
get and to the implementation of resize and report that
the BoundedFIFO object is not being locked per the existing
annotations of design intent. Again, these assurance failures
suggest which segment of the model must be modified—the
lock representation—and where to look for the new repre-
sentation: in the synchronized blocks surrounding the now-
inconsistent code.

4. REFACTORING CONCURRENT
PROGRAMS

Refactorings are patterns for systematic restructuring of
code. In many tools, automatic support for refactorings
is provided as program transformations. As we noted in
Section 1, automated refactoring generally requires explicit
modeling of programmer design intent in order to assure
soundness. This means that refactoring is risky for both
programmers and tool implementors. The transformed code
may be more difficult to understand than the original code,
and also broken because an unstated precondition is not
met. For example, subtle changes to order of computation
can be introduced when field declarations with initializers
are hoisted to superclasses. Another example is the extrac-
tion of new method definitions that leave behind substantive
computation for actual parameter values.

For some refactorings, conservative analyses can compen-
sate for missing intent [19]. Perhaps for this reason, the Java
refactoring literature has generally focused on sequential
programs. With model information and supporting anal-
yses, it becomes more tractable to consider more ambitious
refactoring and program transformations, including manip-
ulation of concurrent programs.

The conventional usage model for refactorings assumes
that the code being refactored is initially “good,” though
usually with respect to an unstated model. That is, the
refactoring modifies the code, implicitly trusting that at the
start the code is consistent with design intent, and results
in code that remains consistent with design intent—and fur-
thermore we assume that the refactorings do not modify the
(usually unstated) design intent.

When models are explicit, however, the picture can be
slightly different: refactorings can manipulate both code and
models. In this section, we consider some problems arising
from traditional refactorings when there are explicit mod-
els. We then describe an approach to refactoring concurrent
programs that supports coevolution of code and models. We
provide an example of one such refactoring: split lock.

4.1 Refactorings and Models

The first step we take is to incorporate the manipulation of
models into the program transformation process. Without
this, there can be risks to programmers making subsequent
changes to code.

Extract Method. This refactoring replaces a programmer-

selected sequence of statements with a call to a new method
whose body is made up of those statements. Consider the
case of extracting a sequence of statements that are nested
within a synchronized block. Because the newly introduced
call to the newly extracted method will still be within the
synchronized block, it is easy to see that the code will be
in the same state of consistency with the locking model as
it was prior to the application of the refactoring. If sub-
sequently any new calls are introduced to the extracted
method definition, they must adhere to the requirement to
hold the lock prior to making the call.

If the locking policy is explicit, this can be handled by
adding a @requiresLock annotation to the newly extracted
method. A program transformation operating with an ex-
plicit model could do this automatically.

An extract method transformation may also interact badly
with non-lock—based concurrent designs. For example, the
AWT enforces thread safety by requiring that certain meth-

97

ods (e.g., paint and update) be executed by the “AWT Thread”
only. We can capture this design intent using “thread col-
oring,” whereby threads are abstractly identified by colors,
and segments of code are colored by the threads in which
they are allowed to execute [22]. Here again, extract method
needs to be made aware of the design intent so that it cor-
rectly propagates the colors to the newly extracted method.
Otherwise, the new method could be run from an incorrectly
colored thread.

Convert Local Variable to Field. This refactoring re-
places a method-local variable with a new field declared in
the class containing the method. The danger here is that we
miss an opportunity to record design intent as the new field
is created. Unlike extract method, we cannot use our analyses
to catch this problem after the fact because, in general, no
prior models exist for the field. This refactoring, and indeed
any refactoring that introduces new fields, will benefit from
interaction with the developer to capture the design intent
for the field. To which region of state should the field be-
long? Is the new field intended to be accessed from multiple
threads, and if so, how is access to it synchronized? Is the
field intended to refer to an unaliased object? By captur-
ing this information up front, correct use of the field can be
checked from the outset.

4.2 Refactoring Concurrency

The presence of explicit models of concurrency-related de-
sign intent enables implementation of refactorings that di-
rectly affect how concurrency is managed within a program.
We have identified a number of transformations, listed be-
low, that are potentially applicable in a generative approach
to concurrency management, in which more complex con-
currency is introduced in a systematic fashion. In this ap-
proach, the programmer begins with a class definition for-
mulated as simple monitor—all state is protected by the
object itself and every public method is synchronized. Such
a class has a simple concurrency policy (see Section 2.1): no
method is allowed to interleave with any other method. The
programmer then applies refactorings to modify the extent
of concurrency supported by the class, updating both the
code and the models describing its locking and concurrency
policies. In particular, when applying these refactorings, the
programmer may choose to liberalize the concurrency policy.

In these cases, there is an important distinction between

“preserving meaning” and “retaining consistency with a model.”

This is due to the fact that our models are more abstract
than fully elaborated representation invariants. This means
that we achieve model compliance more often than preser-
vation of meaning.

The split lock refactoring—considered in more detail below—
decreases the granularity at which state is protected by mov-
ing it “down” the region hierarchy. That is, a lock used to
protect a larger single region is replaced by multiple locks
used to separately protect subregions. This increases op-
portunity for concurrency, but it can be dangerous if the
underlying representation invariants involve close relation-
ships among the new finer-grained regions.

The merge locks refactoring decreases the granularity of
protection by moving “up” the region hierarchy, replacing
multiple shared regions with a single ancestor shared region.

The shrink critical section refactoring alters the scope of the
code in a critical section. The purpose is to move the bound-
ary of a critical past statements that do not access shared

state.

The split critical section refactoring creates additional op-
portunities for method interleaving by converting a single
synchronized block into a sequence of synchronized blocks.

Its dual, merge critical sections, may be used to remove in-
terleaving opportunities and reduce lock acquisition.

The synchronize method and synchronize callsite transforma-
tions modify locking responsibility, move the responsibility
between callee and caller, respectively. These transforma-
tions affect a body of code wider than the class definition
because of the necessity of identifying and updating method
callsites.

4.3 The Split Lock Refactoring

Split lock is parameterized by the @lock annotation of the
lock to be split, which provides a lock L with name M asso-
ciated with a shared region R. The lock annotations within
the class, and all of its subclasses,® are analyzed to deter-
mine all the child regions R;,... , R, of R. For each R;, the
programmer is asked to provide a new mutex name M;, and
to identify a final field of the class or this to be used as the
lock representation F; for that region.

Let us assume, first, that there are no @requiresLock anno-
tations. We start by identifying all the synchronized blocks
that use the given lock L.” For each identified block:

1. Determine the child regions {R;} of R that are af-
fected by the body of the block. These can be located
by identifying the fields that are read or written and
through knowledge of the region hierarchy.

2. Replace the synchronized block with a set of nested®
synchronized blocks that acquire the appropriate locks
{L;} for the regions {R;}.
The class is then modified by adjusting annotations describ-
ing models:
e The original @lock annotation is removed.

e Any annotations @returnsLock M are removed. De-
pending on the visibility of the regions {R;}, it may
be necessary to introduce new lock getter methods, an-
notated with the appropriate @returnsLock annotation
to ensure that the locks are as visible as the regions
they protect.

e For each child region R; of R, a new lock declaration
is added to the class
Qlock M; is F; protects R;

Handling @requiresLock annotations. We now consider
the case of existing @requiresLock annotations. These are
most easily dealt with by replacing all uses of M in them
with My, ..., M,. This is always sound, and does not inter-
fere with existing uses of the methods. Because this affects
the locks that must be acquired, it would be done before
modifying any synchronized blocks. This approach, however,
can unnecessarily constrain the future use of the methods
because they may now require more locks than they may ac-

5We must be able to determine the complete set of
subclasses—i.e., the class may be part of a framework, and
we do not have access to all the subclasses introduced by
clients of the framework. This problem is not unique to
concurrency and we shall say no more about it herein.

"We consider a synchronized method to be a method whose
body is enclosed in synchronized (this) { . }.

8We do not consider deadlock in this paper, though in this
case, it is obvious that the tool should solicit from the pro-
grammer an ordering for the new locks.

98

tually need, e.g., the method only accesses one subregion of
R. The difficulty in automatically making the annotations
less restrictive is discerning the programmer’s intent: the
programmer might want to use less specific annotations to
preserve flexibility for future uses of the method. Thus, the
programmer should be supplied with an additional refactor-
ing enabling him to modify the @requiresLock annotation of
a method, but that uses analysis to prevent the programmer
from under specifying the method’s locking requirements.

Policy issues. Recall that split lock is expected to main-
tain consistency with the programmer-specified concurrency
policy that describes how methods are allowed to interleave.
Splitting a lock can introduce additional opportunities for
methods to interleave—consider the case of two critical re-
gions, where each one accesses a single subregion of R—and
thus render the code inconsistent with the model. Thus,
split lock may have to introduce additional locks that are not
associated with any region but whose purpose is to enforce
consistency with the stated concurrency policy. Such pol-
icy locks would be acquired prior to any of the new locks
associated with regions R;.

The point of split lock, however, is to enable additional con-
currency. The programmer would use it first, and then fol-
low it by a refactoring in which he redefines the concurrency
policy to take advantage of some of the newly enabled inter-
leavings. Here the tool can further assist the programmer
by identifying all possible interleavings based on the critical
sections extant in the code, and by highlighting those that
are newly enabled. In addition to modifying the annota-
tions defining the concurrency policy, the refactoring would
remove some of the acquisitions of policy locks so that the
code could take advantage of the newly liberalized intent.

4.4 Related Work

We are unaware of any specific proposals for concurrency-
related refactorings. Lea describes splitting locks as a de-
sign concept [18, p. 127], but does not consider it as a
refactoring, nor in the context of explicitly expressed design
intent. Most closely related in the literature are compiler
optimizations that modify the scope of critical sections. Es-
cape analysis can remove critical sections from classes not
used in a multi-threaded manner [3, 4, 8, 23]. There are also
optimizations that remove “excess” concurrency to reduce
lock-acquisition overhead. Plevyak, Zhang, and Chien [20]
expose critical sections by inlining method calls, and then
expand them to enable merging of adjacent critical Diniz.
sections and Rinard [10] decrease the protection granularity
in automatically parallelized object-oriented programs. All
objects are originally protected by their own locks, which are
then “coarsened.” In later work [9], they use a technique for
increasing the critical section size using flow-graph reach-
ability. These techniques do not provide source-to-source
transformation, and thus cannot be said to provide auto-
mated evolution of the program.

5. CONCLUSION

By augmenting concurrent Java programs with model in-
formation representing design intent related to “mechanical”
program properties, it becomes possible both to use static
analyses to assure consistency of code and model, and to
develop refactorings that, while possibly changing some as-
pects of program meaning, are sound in the sense that they
maintain consistency with existing design intent. It is also

potentially possible to define refactorings that can restruc-
ture code to accommodate particular kinds of change in de-
sign intent. In this paper we have presented some initial
steps in this exploration. In our experiments in applying
our modeling and analysis tools to a variety of existing pro-
duction systems, we have been able to (1) reverse engineer
to identify model information, (2) perform analyses to as-
sure consistency of model with code, (3) use modeling and
analysis results to identify flaws in code. This experience
illustrates the pervasiveness of race conditions, and also the
potential value of more systematic approaches to develop-
ing and, particularly, evolving concurrent code. These ap-
proaches range from more disciplined use of models to tool-
assisted refactorings, as suggested in the previous section.

6. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
comments. We thank additional project members Edwin
Chan, Elissa Newman, Dean Sutherland, David Swasey, Greg
Mathis, and John Boyland for their help. Effort sponsored in
part through the High Dependability Computing Program
from NASA Ames cooperative agreement NCC-2-1298 and
in part by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory (AFRL), Air
Force Materiel Command, USAF, under agreement num-
ber F30602-99-2-0522. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsement, either expressed
or implied, of NASA, DARPA, AFRL, or the U.S. Govern-
ment.

7. REFERENCES
[1] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: A

dialect of Java without data races. In OOPSLA 00,

pages 382-400.

T. Ball and S. K. Rajamani. The SLAM project:

Debugging system software via static analysis. In

Proceedings of the 29th Symposium on Principles of

Programming Languages, pages 1-3, New York, Jan.

2002. ACM Press.

[3] B. Blanchet. Escape analysis for object-oriented
languages: application to Java. In OOPSLA ’99, pages
20-34.

[4] J. Bogda and U. Holzle. Removing unnecessary
synchronization in Java. In OOPSLA ’99, pages 35-46.

[5] G. Bollella, J. Gosling, B. Brosgol, J. Gosling,

P. Dibble, S. Furr, and M. Turnbull. The Real-Time
Specification for Java. Addison-Wesley, 2000.

[6] J. Boyland. Alias burying: Unique variables without
destructive reads. Softw. Pract. and Ezper.,
31(6):533-553, 2001.

[7] E. C. Chan, J. T. Boyland, and W. L. Scherlis.
Promises: Limited specifications for analysis and
manipulation. In ICSE ’98, pages 167-176.

[8] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar,
and S. Midkiff. Escape analysis for Java. In OOPSLA
’99, pages 1-19.

[9] P. Diniz and M. Rinard. Synchronization
transformations for parallel computing. In POPL ’97,

[2

—

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]
18]

[19]

20]

(21]

[22]

23]

pages 187-200.

P. Diniz and M. Rinard. Lock coarsening: Eliminating
lock overhead in automatically parallelized
object-based programs. In Ninth International
Workshop, Languages and Compilers for Parallel
Computing, pages 285-299, 1996.

C. Flanagan and S. N. Freund. Type-based race
detection for Java. In PLDI ’00, pages 219-232.

M. Fowler. Refactoring: Improving the Design of
Ezisting Code. Addison-Wesley, 1999.

A. Greenhouse. A Programmer-Oriented Approach to
Safe Concurrency. PhD thesis, Carnegie Mellon
University, 2003.

A. Greenhouse and J. Boyland. An object-oriented
effects system. In ECOOP ’99, pages 205-229.

A. Greenhouse, T. J. Halloran, and W. L. Scherlis.
Using Eclipse to demonstrate positive static assurance
of java program concurrency design intent. In eTX
Workshop 2003, pages 101-105.
http://doi.acm.org/10.1145/965660.965681.

A. Greenhouse and W. L. Scherlis. Assuring and
evolving concurrent programs: Annotations and
policy. In ICSE 02, pages 453—463.

D. Hovemeyer and W. Pugh. Finding bugs is easy.
http://www.cs.umd.edu/~pugh/java/bugs/.

D. Lea. Concurrent Programming in Java. The Java
Series. Addison-Wesley, second edition, 2000.

W. F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, Urbana, IL, 1992.

J. Plevyak, X. Zhang, and A. A. Chien. Obtaining
sequential efficiency for concurrent object-oriented
languages. In POPL 95, pages 311-321.

W. L. Scherlis. Systematic change of data
representation: Program manipulations and a case
study. In ESOP ’98, pages 252—-266.

D. F. Sutherland, A. Greenhouse, and W. L. Scherlis.
The code of many colors: Relating threads to code
and shared state. In PASTE 02, pages 77-83.

J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In OOPSLA ’99,
pages 187-206.

Author Index

0l O o e 63
Gopalakrishnan, G. e 26
Greenhouse, A. ... 90
Halloran, T . 90
Harris, L. oo e 46
Herlihy, M. e 63
Hicks, M. e 18
Hovemeyer, D. ... e 80
Jagannathan, S. e 54
Lea, . oo e 1
Lindstrom, G. ... e e e 26
M anSOm, J. oo e 36
Pz, B o 54
Potter, J. o e 10
Prochazka, M. ... 54
Pugh, W e 36, 80
ROSE, J. e 18
Scherer, W, o 70
SCheTlis, W, o e 90
SOt t, M. o e e 70
ShanmeD, AL e 10
SW MY, N et e e e 18
VateK, J. o e 54
Y aII g, Y . o 26
YU, B e 10

viii

