Distributed Machine Learning: A Brief Overview

Dan Alistarh
IST Austria
Background

The Machine Learning “Cambrian Explosion”

Key Factors:

1. **Large Datasets:**
 - *Millions* of labelled images, *thousands of hours* of speech

2. **Improved Models and Algorithms:**
 - Deep Neural Networks: *hundreds* of layers, *millions* of parameters

3. **Efficient Computation for Machine Learning:**
 - Computational power for ML increased by ~100x since 2010 (Maxwell line to Volta)
 - Gains *almost stagnant* in latest generations (GPU: <1.8x, CPU: <1.3x)
 - Computation times are extremely large anyway (days to weeks to months)

Go-to Solution: **Distribute** Machine Learning Applications to Multiple Processors and Nodes
The Problem

CSCS: Europe’s Top Supercomputer (World 3rd)
- 4500+ GPU Nodes, state-of-the-art interconnect

Task:
- Image Classification (ResNet-152 on ImageNet)
- Single Node time (TensorFlow): 19 days
- 1024 Nodes: 25 minutes (in theory)
The Problem

CSCS: Europe’s Top Supercomputer (World 3rd)
- 4500+ GPU Nodes, state-of-the-art interconnect

Task:
- Image Classification (ResNet-152 on ImageNet)
- Single Node time (TensorFlow): 19 days
- 1024 Nodes: 25 minutes (in theory)
The Problem

CSCS: Europe’s Top Supercomputer (World 3rd)
• 4500+ GPU Nodes, state-of-the-art interconnect
Task:
• Image Classification (ResNet-152 on ImageNet)
• Single Node time (TensorFlow): 19 days
• 1024 Nodes: 25 minutes (in theory)

Efficient distribution is still a non-trivial challenge for machine learning applications.
Part 1: Basics
Machine Learning in 1 Slide

\[
\text{argmin}_x f(x) \\
\text{where } f(x) = \sum_{i=1}^{M} \text{loss}(x, e_i) \\
\text{model } x
\]

Solved via optimization procedure, e.g. stochastic gradient descent (SGD).

Notion of “quality,” e.g. squared distance

E.g., neural network or linear model

E.g., classification
Distributed Machine Learning in 1 Slide

$$\text{argmin}_x f(x) = f_1(x) + f_2(x)$$

$$f_1(x) = \sum_{i=1}^{M/2} l(x, ei)$$

$$f_2(x) = \sum_{i=M/2+1}^{M} l(x, ei)$$

This is the (somewhat standard) data parallel paradigm, but there are also model parallel or hybrid approaches.
The Optimization Procedure: Stochastic Gradient Descent

- Gradient descent (GD): \(x_{t+1} = x_t - \eta_t \nabla f(x_t) \).

- Stochastic gradient descent:
 Let \(\bar{g}(x_t) \) = gradient at *randomly chosen* point.
 \(x_{t+1} = x_t - \eta_t \bar{g}(x_t) \), where \(E[\bar{g}(x_t)] = \nabla f(x_t) \).

- Let \(E[||\bar{g}(x) - \nabla f(x)||^2] \leq \sigma^2 \) (variance bound)

Theorem [classic]: Given \(f \) convex and \(\ell \)-smooth, and \(R^2 = ||x_0 - x^*||^2 \).
If we run SGD for \(T = \mathcal{O}(R^2 \frac{2\sigma^2}{\varepsilon^2}) \) iterations, then

\[
E \left[f \left(\frac{1}{T} \sum_{t=0}^{T} x_t \right) \right] - f(x^*) \leq \varepsilon.
\]
A Compromise

• **Mini-batch SGD:**
 Let $\tilde{g}_B(x_t) = \text{stochastic gradient with respect to a set of } B \text{ randomly chosen points.}$

 $$x_{t+1} = x_t - \eta_t \tilde{g}_B(x_t), \text{ where } E[\tilde{g}_B(x_t)] = \nabla f(x_t).$$

• Why is this better?
 • The variance σ^2 of $\tilde{g}_B(x_t)$ is reduced linearly by B with respect to $\tilde{g}(x_t)$
 • By the previous Theorem, the algorithm will converge in B times less iterations (in the convex case)

Note: Convergence is less well understood for non-convex optimization objectives (e.g., neural nets). In this case, it’s known that SGD converges to a local optimum (point where gradient = 0).
SGD Parallelization

\[\tilde{g}_n = \frac{\sum_i g^i}{n} \]

Aggregation can be performed via:
- Master node ("parameter server")
- MPI All-Reduce ("decentralized")
- Shared-Memory

Stochastic gradient with \(n \) times lower variance

Theory: by distributing, we can perform \(P \) times more work per "clock step." Hence, we should converge \(P \) times faster in terms of wall-clock time.

Embarrassingly parallel?
The Practice

Training very large models efficiently

• Vision
 • ImageNet: 1.3 million images
 • ResNet-152 [He+15]: 152 layers, 60 million parameters
 • Model/update size: approx. 250MB

• Speech
 • NIST2000 Switchboard dataset: 2000 hours
 • LACEA [Yu+16]: 22 LSTM (recurrent) layers, 65 million parameters (w/o language model)
 • Model/update size: approx. 300MB

Data parallel SGD

Compute gradient | Exchange gradient | Update params

Minibatch 1 | Minibatch 2 | Minibatch 3
Data parallel SGD (bigger models)

- Compute gradient
- Exchange gradient
- Update params

Minibatch 1
Minibatch 2
Data parallel SGD (**biggerer** model)

- **Minibatch 1**
 - Compute gradient
 - Exchange gradient
 - Update params

- **Minibatch 2**
 - Compute gradient
 - Exchange gradient
 - Update params
More Precisely: Two major costs

Computing gradient

Exchange gradient

Update params

Communication

Synchronization

Minibatch 1

Minibatch 2
Part 2: Communication-Reduction Techniques
Data parallel SGD (*biggerer* model)
Idea [Seide et al., 2014]: *compress* the gradients...
1BitSGD Quantization
[Microsoft Research, Seide et al. 2014]

Quantization function

\[Q_i(v) = \begin{cases}
 \text{avg}_+ & \text{if } v_i \geq 0, \\
 \text{avg}_- & \text{otherwise}
\end{cases} \]

where \(\text{avg}_+ = \text{mean}(\{v_i \text{ for } i: v_i \geq 0\}) \), \(\text{avg}_- = \text{mean}(\{v_i \text{ for } i: v_i < 0\}) \)

Accumulate the error locally, and apply to next gradient!

Compression rate \(\approx 32x \)

Does not always converge!

Seide et al (2014) “1-Bit Stochastic Gradient Descent and its Application to Data-Parallel Distributed Training of Speech DNNs”
Why this shouldn’t work

Let $Q(x)$ be the gradient quantization function.

- Iteration:

 \[x_{t+1} = x_t - \eta_t Q(\nabla f(x_t)) \text{ where } E[\tilde{g}(x_t)] = \nabla f(x_t). \]

- Let:

 - $E[||\tilde{g}(x) - \nabla f(x)||^2] \leq \sigma^2$ (variance bound)

\[E[\tilde{g}(x_t)] \neq \nabla f(x_t) \]

\[x_{t+1} = x_t - \eta_t Q(\nabla f(x_t)) \]

Theorem [classic]: Given f convex and L-smooth, and $R^2 = ||x_0 - x^*||^2$.

If we run SGD for $T = \mathcal{O}(\frac{R^2 \sigma^2}{\varepsilon^2})$ iterations, then

\[E \left[f \left(\frac{1}{T} \sum_{t=0}^{T} x_t \right) \right] - f(x^*) \leq \varepsilon. \]
Take One: Stochastic Quantization

• Quantization function

\[Q(v_i) = \|v\|_2 \cdot \text{sgn}(v_i) \cdot \xi_i(v_i) \]

where \(\xi_i(v_i) = 1 \) with probability \(|v_i|/\|v\|_2 \) and 0 otherwise.

Properties:
1. Unbiasedness:
 \[E[Q[v_i]] = \|v\|_2 \cdot \text{sgn}(v_i) \cdot |v_i|/\|v\|_2 = \text{sgn}(v_i) \cdot |v_i| \]

2. Second moment (variance) bound:
 \[E[\|Q[v]\|^2] \leq \|v\|_2 \|v\|_1 \leq \sqrt{n} \|v\|^2 \]

3. Sparsity: If \(v \) has dimension \(n \), then
 \[E[\text{non-zeroes in } Q(v)] = E[\sum_i \xi_i(v)] \leq \|v\|_1/\|v\|_2 \leq \sqrt{n} \]

Convergence:
\[E[Q[\tilde{g}(x_i)]] = E[\tilde{g}(x_i)] = \nabla f(x_i) \]

Runtime \(\leq \sqrt{n} \) more iterations

\[||v||_2 = 0.447 \]
Compression

• Quantization function

\[Q(v_i) = \|v\|_2 \cdot \text{sgn}(v_i) \cdot \xi_i(v_i) \]

where \(\xi_i(v_i) = 1 \) with probability \(|v_i|/\|v\|_2 \) and 0 otherwise.

Original: 32n bits

Compression \(\approx \sqrt{n}/\log n \).

Compressed: \(32 + \sqrt{n} \log n \) bits

Moral: We’re not too happy:

the \(\sqrt{n} \) increase in number of iterations offsets the \(\sqrt{n}/\log n \) compression.
Take Two: QSGD

[Alistarh, Grubic, Li, Tomioka, Vojnovic, NIPS17]

- Quantization function

\[Q[v; s] = \|v\|_2 \cdot \text{sgn}(v_i) \cdot \xi_i(v, s) \]

where

\[s = 1 \text{ reduces to the two-bit quantization function.} \]

- Note: \(s=1 \) reduces to the two-bit quantization function.
QSGD Properties

- Quantization function
 \[Q[v_i; s] = \|v\|_2 \cdot \text{sgn}(v_i) \cdot \xi_i(v, s) \]

- Properties
 1. Unbiasedness
 \[E[Q[v_i; s]] = v_i \]
 2. Sparsity
 \[E[\|Q(v, s)\|_0] \leq s^2 + \sqrt{n} \]
 3. Second moment bound
 \[E[\|Q[v; s]\|_2^2] \leq \left(1 + \min \left(\frac{n}{s^2}, \frac{\sqrt{n}}{s} \right) \right) \cdot \|v\|_2^2 \]
 (Multiplier only 2 for \(s = \sqrt{n} \))
Two Regimes

Theorem 1 (constant s): The expected bit length of the quantized gradient is

\[32 + (s^2 + \sqrt{n}) \log n. \]

Theorem 2 (large s): For \(s = \sqrt{n} \), the expected bit length of the quantized gradient is

\[32 + 2.8 \cdot n, \] and the added variance is **constant**.

- **Idea1:** there can be few large integer values encoded
- **Idea2:** Use **Elias recursive coding** to code integers efficiently

Theorem [Tsitsiklis&Luo, ‘86]: Given dimension \(n \), the necessary number of bits for approximating the minimum within \(\varepsilon \) is

\[\Omega \left(n \left(\log n + \log \left(\frac{1}{\varepsilon} \right) \right) \right). \]

Matches Thm 2.

Original: 32n bits.
Does it actually work?

- Amazon EC2 p2.xlarge machine
- AlexNet model (60M params) \times ImageNet dataset \times 2 GPUs
- QSGD 4bit quantization (s = 16)
- No additional hyperparameter tuning

Compute

\begin{tabular}{ll}
SGD & 60% \\
QSGD 4bit (d=512) & 5% \\
\end{tabular}

Communicate

\begin{tabular}{ll}
SGD & 40% \\
QSGD 4bit (d=512) & 95% \\
\end{tabular}

SGD vs QSGD on AlexNet.
Experiments: “Strong” Scaling

AlexNet
- 2 GPUs: 1.2 hours
- 4 GPUs: 0.8 hours
- 8 GPUs: 0.6 hours
- 16 GPUs: 0.4 hours
- QSGD 4bit (d=512): 0.2 hours

Time per epoch: 2.5x

VGG19
- 2 GPUs: 20 hours
- 4 GPUs: 15 hours
- 8 GPUs: 10 hours
- 16 GPUs: 5 hours
- QSGD 4bit (d=512): 2.5 hours

Time per epoch: 3.5x

ResNet152
- 2 GPUs: 16 hours
- 4 GPUs: 14 hours
- 8 GPUs: 12 hours
- 16 GPUs: 10 hours
- QSGD 4bit (d=512): 8 hours

Time per epoch: 1.8x

BN-Inception
- 2 GPUs: 2.5 hours
- 4 GPUs: 2.0 hours
- 8 GPUs: 1.5 hours
- 16 GPUs: 1.0 hours
- QSGD 4bit (d=512): 0.5 hours

Time per epoch: 1.3x
Experiments: Accuracy

Across all networks we tried, 4 bits are sufficient. (QSGD report contains full numbers and comparisons.)
Other Communication-Efficient Approaches

Quantization-based methods yield stable, but limited gains in practice
• Usually $< 32x$ compression, since it’s just bit width reduction
• Can’t do much better without large variance [QSGD, NIPS17]

The “Engineering” approach [NVIDIA NCCL]
• Increase network bandwidth, decrease network latency
• New interconnects (NVIDIA, CRAY), better protocols (NVIDIA)

The ”Sparsification” approach [Dryden et al., 2016; Aji et al., 2018]
• Send the “important” components of each gradient, sorted by magnitude
• Empirically gives much higher compression (up to 800x [Han et al., ICLR 2018])

“Large-Batch” approaches [Goyal et al., 2017; You et al., 2018]
• Run more computation locally before communicating (large “batches”)
• Need extremely careful parameter tuning in order to work without accuracy loss
Roadmap

• Introduction
• Basics
 • Distributed Optimization and SGD
• Communication-Reduction
 • Stochastic Quantization and QSGD
• Asynchronous Training
 • Asynchronous SGD
• Recent Work
Two major costs

- Compute gradient
- Exchange gradient
- Update params

Communication

Synchronization
SGD Parallelization

\[\sum \tilde{g}_n \]

Dataset Partition 1
Dataset Partition 2
Dataset Partition 3
...
Dataset Partition n

Aggregation in Shared Memory
Lock-based? Lock-free?
SGD in Asynchronous Shared Memory

P threads, adversarial scheduler

- Model updated using atomic operations (read, CAS/Fetch-and-add)

Does SGD still converge under asynchronous (inconsistent) iterations?
Define $\tau =$ maximum number of previous updates a scan may miss. Note that $\tau \leq$ maximum interval contention for an operation.
Convergence Intuition

Legend:
- **Blue** = original minibatch SGD
- **Red** dotted = delayed updates

Adversary’s power:
- Delay a subset of gradient updates
- Move the delayed updates to delay convergence to the **optimum**

Adversary’s limitation:
- τ is the **maximum delay** between when the step is generated and when it has to be applied

Theorem [Recht et al., ‘11]: Under analytic assumptions, asynchronous SGD still converges, but at a rate that is $O(\tau)$ times slower than serial SGD.
Convergence of Asynchronous SGD ("Hogwild")

Theorem [Recht et al., ‘11]: Under analytic assumptions, asynchronous SGD still converges, but at a rate that is \(O(\tau) \) times slower than serial SGD.

Lots of follow-up work, tightening assumptions.

The linear dependency on \(\tau \) is tight in general, but can be reduced to \(\sqrt{P\tau} \) by simple modifications [PODC18].

This is a **worst-case bound**: in practice, asynchronous SGD sometimes converges at **the same rate** as the serial version.

Theoretical gains come from the fact that the \(\tau \) slowdown due to async is compensated by the speedup of \(P \) due to parallelism.

More details in Nikola’s talk on Wednesday morning!

Recht et al. “HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent”, NIPS 2011
Asynchronous Approaches

The Convex Case:
• By now, lock-free is the standard implementation of SGD in shared memory
• Exploit the fact that many large datasets are sparse, so conflicts are rare
• NUMA case is much less well understood

The Non-Convex Case:
• Requires careful hyperparameter tuning to work, and is less popular
• Convergence of SGD in the non-convex case is less well understood, and very little is known analytically [Lian et al, NIPS 2015]

Summary

Most medium-to-large-scale machine learning is distributed.

Communication-efficient and asynchronous learning techniques are fairly common, and are starting to have a sound theoretical basis.

Lots of exciting new questions!
A Sample of Open Questions

What are the notions of *consistency* required by distributed machine learning algorithms in order to converge?

At first sight, *much weaker* than standard notions.

$$\arg\min_x f(x) = f_1(x) + f_2(x)$$

model $x_1 = x + \text{noise}$
model $x_1 = x + \text{noise}$
A Sample of Open Questions

Can distributed Machine Learning algorithms be Byzantine-resilient?

Early work by [Su, Vaidya], [Blanchard, El Mhamdi, Guerraoui, Steiner]

Non-trivial ideas from both ML and distributed computing sides.

$$\text{argmin}_x f(x) = f_1(x_1) + f_2(x_2)$$
Can distributed Machine Learning algorithms be **completely decentralized**? Early work by e.g. [Lian et al., NIPS 2017], for SGD.